Multi-view Learning 多视角学习入门

本文深入解析了协同训练算法,一种半监督学习方法,通过利用未标记数据提升分类器性能。详细介绍了算法步骤,包括初始化分类器,迭代使用两个视图的数据进行训练,以及如何选择最置信的数据加入已标记数据集。探讨了算法的有效性和应用场景。
摘要由CSDN通过智能技术生成

https://blog.csdn.net/Danliwoo/article/details/79278574

标准协同训练算法的步骤为:

输入:标记数据集L,未标记数据集U。

  • 用L1训练视图X1上的分类器f1,用L2训练视图X2上的分类器f2;
  • 用f1和f2分别对未标记数据U进行分类;
  • 把f1对U的分类结果中,前k个最置信的数据(正例p个反例n个)及其分类结果加入L2;把f2对U的分类结果中,前k个最置信的数据及其分类结果加入L1;把这2(p+n)个数据从U中移除;
  • 重复上述过程,直到U为空集。

输出:分类器f1和f2。

注: f1和f2可以是同一种分类器也可以不是同一种分类器。

三.参考和其他学习资料

[1].Combining Labeled and Unlabeled Data with Co-Training

[2].半监督学习中的协同训练风范

[3].A Co-Regularization Approach to Semi-supervised Learning with Multiple Views

[4].When Does Co-Training Work in Real Data?

[5].Semi-Supervised Learning with Multiple Views 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值