https://blog.csdn.net/Danliwoo/article/details/79278574
标准协同训练算法的步骤为:
输入:标记数据集L,未标记数据集U。
- 用L1训练视图X1上的分类器f1,用L2训练视图X2上的分类器f2;
- 用f1和f2分别对未标记数据U进行分类;
- 把f1对U的分类结果中,前k个最置信的数据(正例p个反例n个)及其分类结果加入L2;把f2对U的分类结果中,前k个最置信的数据及其分类结果加入L1;把这2(p+n)个数据从U中移除;
- 重复上述过程,直到U为空集。
输出:分类器f1和f2。
注: f1和f2可以是同一种分类器也可以不是同一种分类器。
三.参考和其他学习资料
[1].Combining Labeled and Unlabeled Data with Co-Training
[2].半监督学习中的协同训练风范
[3].A Co-Regularization Approach to Semi-supervised Learning with Multiple Views
[4].When Does Co-Training Work in Real Data?
[5].Semi-Supervised Learning with Multiple Views