BZOJ 2005: [Noi2010]能量采集

11 篇文章 0 订阅
7 篇文章 0 订阅

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Solution

刷了那么久数论智力有点下降了。。
看到题目显然可以直接转化成求 ans=ni=1mj=1gcd(i,j)21
拎出一个 d=>ans=dfloor(n/d)i=1floor(m/d)j=1[gcd(i,j)=1]d21
换而言之,问题变成了求 ni=1mj=1[gcd(i,j)=1]
这个用容斥原理可以直接搞对吧
没啥特别的题,我只是想提提这个式子 ni=1mj=1[gcd(i,j)=1] 可以用容斥原理搞。。当时脑抽了

Code

/**************************************************************
    Problem: 2005
    User: bblss123
    Language: C++
    Result: Accepted
    Time:448 ms
    Memory:6172 kb
****************************************************************/

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int M=1e6+5;
int prime[M],t;
bool mark[M];
inline void Eular(){
    for(int i=2;i<M;++i){
        if(!mark[i]){prime[t++]=i;continue;}
        for(int j=0,p;j<t&&1ll*(p=prime[j])*i<M;++j){
            mark[p*i]=1;
            if(i%p==0)break;
        }
    }
}
ll ans,w;
int fac[20],s;
inline void Divide(int m){
    s=0;
    for(int i=0;1ll*prime[i]*prime[i]<=m;++i)
        if(m%prime[i]==0)
            for(fac[s++]=prime[i];m%prime[i]==0;)m/=prime[i];
    if(m>1)fac[s++]=m;
}
inline void modify(int m){
    for(int i=0;i<1<<s;++i){
        int c=0,k=1;
        for(int j=0;j<s;++j)
            if(i&1<<j)++c,k*=fac[j];
        if(c&1)w-=m/k;
        else w+=m/k;
    }
}
int main(){
    Eular();
    int n,m;cin>>n>>m;
    for(int d=1;d<=min(n,m);++d){
        w=0;
        for(int i=1;i*d<=n;++i){
            Divide(i);
            modify(m/d);
        }
        ans+=1ll*d*w;
    }
    ans=ans*2ll-1ll*n*m;
    printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值