Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Solution
刷了那么久数论智力有点下降了。。
看到题目显然可以直接转化成求
ans=∑ni=1∑mj=1gcd(i,j)∗2−1
拎出一个
d=>ans=∑d∑floor(n/d)i=1∑floor(m/d)j=1[gcd(i,j)=1]∗d∗2−1
换而言之,问题变成了求
∑ni=1∑mj=1[gcd(i,j)=1]
了
这个用容斥原理可以直接搞对吧
没啥特别的题,我只是想提提这个式子
∑ni=1∑mj=1[gcd(i,j)=1]
可以用容斥原理搞。。当时脑抽了
Code
/**************************************************************
Problem: 2005
User: bblss123
Language: C++
Result: Accepted
Time:448 ms
Memory:6172 kb
****************************************************************/
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int M=1e6+5;
int prime[M],t;
bool mark[M];
inline void Eular(){
for(int i=2;i<M;++i){
if(!mark[i]){prime[t++]=i;continue;}
for(int j=0,p;j<t&&1ll*(p=prime[j])*i<M;++j){
mark[p*i]=1;
if(i%p==0)break;
}
}
}
ll ans,w;
int fac[20],s;
inline void Divide(int m){
s=0;
for(int i=0;1ll*prime[i]*prime[i]<=m;++i)
if(m%prime[i]==0)
for(fac[s++]=prime[i];m%prime[i]==0;)m/=prime[i];
if(m>1)fac[s++]=m;
}
inline void modify(int m){
for(int i=0;i<1<<s;++i){
int c=0,k=1;
for(int j=0;j<s;++j)
if(i&1<<j)++c,k*=fac[j];
if(c&1)w-=m/k;
else w+=m/k;
}
}
int main(){
Eular();
int n,m;cin>>n>>m;
for(int d=1;d<=min(n,m);++d){
w=0;
for(int i=1;i*d<=n;++i){
Divide(i);
modify(m/d);
}
ans+=1ll*d*w;
}
ans=ans*2ll-1ll*n*m;
printf("%lld\n",ans);
return 0;
}