傅里叶变换学习1

傅里叶级数
傅里叶认为“任何”周期信号都可以表示为一系列成“谐波关系”的正弦信号的叠加。

为了直观化表达,将正弦(或余弦)信号同时以两种运动形式来表示,分别是;
    一种是以时间为横轴、位移为纵轴,某一点的往复运动,也就是通常所说的正弦波,或者说是振荡信号;
    另一种为某一点绕另一点的匀速圆周运动,正弦波就是一个圆周运动在一条直线上的投影;

图片来源: http://1ucasvb.tumblr.com

这两种表示方法之间并没有什么本质上的区别,就如同描绘转角大小,一圈可以用角度表示为360°,也可以用弧度表示为2π弧度一样; 

 

来看方波是如何由多个正弦信号合成;
方波也称为矩形波,可以分解为无限多个正弦信号的组合;下图展示了方波的傅里叶级数的前50项的叠加过程,如果项数继续增加,则最终趋近方波;

图片来源: http://1ucasvb.tumblr.com

 

时域和频域的概念,如下图;左边时域-右边频域;

时域就是在t轴上每个时刻点有一个值的方波;频域就是此方波包含的多个频率成分,多个正弦波;


对于满足狄里赫利(Dirichlet)条件的周期信号,可以分解为一组成谐波关系的正弦信号,或者说该周期信号做傅里叶变换可以得到一组傅里叶级数。

对于周期信号,既然知道了其中的各个成分是成谐波关系的,那么频率成分就确定了。所以在不考虑相位差的情况下,问题关键是如何得到这些成谐波关系的正弦信号前的系数(或者说,谐波的幅值,也即是各个成分的大小)。而傅里叶变换的公式恰恰就给了我们解决该问题途径;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值