自然数幂次求和公式

1. 原文

知乎

2.证明

2.1 自然数求和公式

通过构造二次相减的形式来求

( n + 1 ) 2 − n 2 = 2 n + 1 n 2 − ( n − 1 ) 2 = 2 ( n − 1 ) + 1 . . . 2 2 − 1 2 = 2 ∗ 1 + 1 (n+1)^{2}-n^2=2n+1\\ n^2-(n-1)^2=2(n-1) +1\\ ...\\ 2^2-1^2=2*1+1 (n+1)2n2=2n+1n2(n1)2=2(n1)+1...2212=21+1
将上述所有等式相加得到
( n + 1 ) 2 − 1 = 2 ∑ k = 1 n k + n 2 ∑ k = 1 n k = n 2 + n (n+1)^2-1=2\sum_{k=1}^{n}k +n\\ 2\sum_{k=1}^{n}k =n^2+n (n+1)21=2k=1nk+n2k=1nk=n2+n
得到求和公式
∑ k = 1 n k = n ( n + 1 ) 2 \sum_{k=1}^{n}k=\frac{n(n+1)}{2} k=1nk=2n(n+1)

2.2 平方求和公式

依然是高一次项作差
( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 . . . 2 3 − 1 3 = 3 ∗ 1 2 + 3 ∗ 1 + 1 (n+1)^3-n^3=3n^2+3n+1\\ n^3-(n-1)^3=3(n-1)^2+3(n-1) +1\\ ...\\ 2^3-1^3=3*1^2+3*1+1 (n+1)3n3=3n2+3n+1n3(n1)3=3(n1)2+3(n1)+1...2313=312+31+1
继续求和
( n + 1 ) 3 − 1 = 3 ∑ k = 1 n k 2 + 3 ∑ k = 1 n k + n n 3 + 3 n 2 + 3 n = 3 ∑ k = 1 n k 2 + 3 ( n + 1 ) n 2 + n 2 n 3 + 6 n 2 + 6 n = 6 ∑ k = 1 n k 2 + 3 ( n + 1 ) n + 2 n 2 n 3 + 6 n 2 + 6 n = 6 ∑ k = 1 n k 2 + 3 n 2 + 5 n 2 n 3 + 3 n 2 + n = 6 ∑ k = 1 n k 2 ∑ k = 1 n k 2 = 2 n 3 + 3 n 2 + n 6 (n+1)^{3}-1=3\sum_{k=1}^{n}k^2 +3\sum_{k=1}^nk+n\\ n^{3}+3n^2+3n=3\sum_{k=1}^{n}k^2 +\frac{3(n+1)n}{2}+n\\ 2n^{3}+6n^2+6n=6\sum_{k=1}^{n}k^2 +{3(n+1)n}+2n\\ 2n^{3}+6n^2+6n=6\sum_{k=1}^{n}k^2 +3n^2+5n\\ 2n^{3}+3n^2+n=6\sum_{k=1}^{n}k^2 \\ \sum_{k=1}^{n}k^2=\frac{2n^{3}+3n^2+n}{6} (n+1)31=3k=1nk2+3k=1nk+nn3+3n2+3n=3k=1nk2+23(n+1)n+n2n3+6n2+6n=6k=1nk2+3(n+1)n+2n2n3+6n2+6n=6k=1nk2+3n2+5n2n3+3n2+n=6k=1nk2k=1nk2=62n3+3n2+n
所以平方求和公式为
∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{k=1}^{n}k^2=\frac{n(n+1)(2n+1)}{6} k=1nk2=6n(n+1)(2n+1)

2.3 更高的幂次

对于自然数的 m m m次求和公式,可以由 m + 1 m+1 m+1次方做差得到

( n + 1 ) m + 1 − n m + 1 = ∑ k = 1 m ( m + 1 k ) n k (n+1)^{m+1}-n^{m+1}=\sum_{k=1}^{m} {{m+1} \choose k}n^k (n+1)m+1nm+1=k=1m(km+1)nk
带入已经求得的 n k ( n < m ) n^k(n \lt m) nk(n<m),是可以求出 m m m次的求和公式,只是比较复杂。
( n + 1 ) m + 1 − n m + 1 = ∑ k = 0 m ( m + 1 k ) n k n m + 1 − ( n − 1 ) m + 1 = ∑ k = 0 m ( m + 1 k ) ( n − 1 ) k . . . 2 m + 1 − 1 m + 1 = ∑ k = 0 m ( m + 1 k ) 1 k (n+1)^{m+1}-n^{m+1}=\sum_{k=0}^{m} {{m+1} \choose k}n^k\\ n^{m+1}-(n-1)^{m+1}=\sum_{k=0}^{m} {{m+1} \choose k}(n-1 )^k\\ \\ ...\\ 2^{m+1}-1^{m+1}=\sum_{k=0}^{m} {{m+1} \choose k}1^k (n+1)m+1nm+1=k=0m(km+1)nknm+1(n1)m+1=k=0m(km+1)(n1)k...2m+11m+1=k=0m(km+1)1k
将之求和得到
( n + 1 ) m + 1 − 1 = ∑ k = 0 m ( m + 1 k ) ∑ j = 1 n   j k (n+1)^{m+1}-1=\sum_{k=0}^{m}{{m+1} \choose k}\sum_{j=1}^n\ j^{k} (n+1)m+11=k=0m(km+1)j=1n jk
将对应幂次的求和公式带入即可。
幂次多了后,算起来会相当复杂。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值