观察
可以看到下面的结果:
∑k=1nk∑k=1nk2∑k=1nk3∑k=1nk4∑k=1nk5∑k=1nk6∑k=1nk7∑k=1nk8∑k=1nk9∑k=1nk10∑k=1nk11∑k=1nk12=n(n+1)2=n(n+1)(2n+1)6=n2(n+1)24=n(n+1)(2n+1)(3n2+3n−1)30=n2(n+1)2(2n2+2n−1)12=n(n+1)(2n+1)(3n4+6n3−3n+1)42=124n2(n+1)2(3n4+6n3−n2−4n+2)=190n(n+1)(2n+1)(5n6+15n5+5n4−15n3−n2+9n−3)=120n2(n+1)2(n2+n−1)(2n4+4n3−n2−3n+3)=166n(n+1)(2n+1)(n2+n−1)(3n6+9n5+2n4−11n3+3n2+10n−5)=124n2(n+1)2(2n8+8n7+4n6−16n5−5n4+26n3−3n2−20n+10)=n(n+1)(2n+1)(105n10+525n9+525n8−1050n7−1190n6+2310n5+1420n4−3285n3−287n2+2073n−691)2730
等等。
奥数出这样的题怎么办?如果给了公式,数学归纳法总能证明。如果不给公式,直接求怎么办?
临时能算出来的,只有高斯大神: p=1,n=100
上述公式速记的办法
上面 的和式, 如果记:
S(n,p)=∑k=1nkp
1980年,有人Schultz指出,它们都可以表示成
n
的
先说
p+1
次齐次多项式(不带常数项)的形式:
S(n,p)=∑k=1nkp=cp+1np+1+cpnp+cp−1np−1+⋯+c2n2+c1n
这些系数
c1,c2,⋯,cp,cp+1
满足如下线性方程(组):
∑i=j+1p+1(−1)i−j+1(ij)ci=δj,p
其中 (ij) 是组合数, i 中取
取 j=0,1,2,⋯,p 从而可以列出 p+1 个线性方程,解出 p+1 个系数 c1,c2,⋯,cp−1,cp+1 。