自然数幂级数之和

观察

可以看到下面的结果:

k=1nkk=1nk2k=1nk3k=1nk4k=1nk5k=1nk6k=1nk7k=1nk8k=1nk9k=1nk10k=1nk11k=1nk12=n(n+1)2=n(n+1)(2n+1)6=n2(n+1)24=n(n+1)(2n+1)(3n2+3n1)30=n2(n+1)2(2n2+2n1)12=n(n+1)(2n+1)(3n4+6n33n+1)42=124n2(n+1)2(3n4+6n3n24n+2)=190n(n+1)(2n+1)(5n6+15n5+5n415n3n2+9n3)=120n2(n+1)2(n2+n1)(2n4+4n3n23n+3)=166n(n+1)(2n+1)(n2+n1)(3n6+9n5+2n411n3+3n2+10n5)=124n2(n+1)2(2n8+8n7+4n616n55n4+26n33n220n+10)=n(n+1)(2n+1)(105n10+525n9+525n81050n71190n6+2310n5+1420n43285n3287n2+2073n691)2730

等等。

奥数出这样的题怎么办?如果给了公式,数学归纳法总能证明。如果不给公式,直接求怎么办?

临时能算出来的,只有高斯大神: p=1,n=100

上述公式速记的办法

上面 的和式, 如果记:

S(n,p)=k=1nkp

1980年,有人Schultz指出,它们都可以表示成 n p+1 次多项式,所以,只须找一个算法确定多项式每一项的系数就可以了。——这个算法是解 n×n 的线性方程组,看上去非常简单。

先说 p+1 次齐次多项式(不带常数项)的形式:

S(n,p)=k=1nkp=cp+1np+1+cpnp+cp1np1++c2n2+c1n

这些系数 c1,c2,,cp,cp+1 满足如下线性方程(组):

i=j+1p+1(1)ij+1(ij)ci=δj,p

其中 (ij) 是组合数, i 中取j个之取法; δj,p 是克罗内克记号, j=p 取1,否则为0。

j=0,1,2,,p 从而可以列出 p+1 个线性方程,解出 p+1 个系数 c1,c2,,cp1,cp+1

参考文献

http://mathworld.wolfram.com/PowerSum.html

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值