线性代数笔记13--正交向量和正交子空间

0. 四个子空间

在这里插入图片描述

1. 正交向量

两向量点乘为0,向量正交。
A ⊤ B = 0 A^{\top}B=0 AB=0

勾股定理
∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2 ||x||^2+||y^2||=||x+y||^2 ∣∣x2+∣∣y2∣∣=∣∣x+y2
验证正交条件

∣ ∣ x ∣ ∣ 2 = x ⊤ x = x x ⊤ ∣ ∣ y ∣ ∣ 2 = y ⊤ y = y y ⊤ ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ = ∣ ∣ x + y ∣ ∣ 2    ⟺    x ⊤ x + y ⊤ y = ( x + y ) ( x + y ) ⊤ = ( x + y ) ( x ⊤ + y ⊤ ) = x x ⊤ + x y ⊤ + y x ⊤ + y y ⊤ y x ⊤ = x ⊤ y = x y ⊤ = x ⊤ y 2 x ⊤ y = 0 x ⊤ y = 0 ||x||^2=x^{\top}x=xx^{\top}\\ ||y||^2=y^{\top}y=yy^{\top}\\ ||x||^2+||y^2||=||x+y||^2 \iff\\ x^{\top}x+y^{\top}y=(x+y)(x+y)^{\top}=(x+y)(x^{\top}+y^{\top})=\\ xx^{\top}+xy^{\top}+yx^{\top}+yy^{\top}\\ yx^{\top}=x^{\top}y=xy^{\top}=x^{\top}y\\ 2x^{\top}y=0\\ x^{\top}y=0 ∣∣x2=xx=xx∣∣y2=yy=yy∣∣x2+∣∣y2∣∣=∣∣x+y2xx+yy=(x+y)(x+y)=(x+y)(x+y)=xx+xy+yx+yyyx=xy=xy=xy2xy=0xy=0

也即垂直的条件
x ⊤ y = 0 x^{\top}y=0 xy=0

举例:
x = [ 1 2 3 ] y = [ 2 − 1 0 ] x + y = [ 3 1 3 ] ∣ x ∣ 2 + ∣ y ∣ 2 = 1 + 4 + 9 + 4 + 1 = 19 ∣ x + y ∣ 2 = 9 + 9 + 1 = 19 x=\begin{bmatrix} 1 \\ 2\\ 3 \end{bmatrix} y=\begin{bmatrix}2 \\ -1\\ 0 \end{bmatrix}\\ x+y=\begin{bmatrix} 3 \\ 1\\ 3 \end{bmatrix}\\ |x|^2+|y|^{2}=1+4+9+4+1=19\\ |x+y|^2=9+9+1=19 x= 123 y= 210 x+y= 313 x2+y2=1+4+9+4+1=19x+y2=9+9+1=19

2. 正交子空间

空间 S S S正交空间 T T T:
∀ s → ∈ S , ∀ t → ∈ T : s → t → = 0    ⟺    s → ⊥ t → \forall \overrightarrow{s} \in S,\forall \overrightarrow{t} \in T: \overrightarrow{s}\overrightarrow{t}=0 \iff \overrightarrow{s} \perp \overrightarrow{t} s S,t T:s t =0s t

方阵行空间 C ( A ⊤ ) C(A^{\top}) C(A)与零空间 N ( A ) N(A) N(A)正交证明

A X = 0 [ r 1 r 2 r 3 . . . r m ] y = [ r 1 r 2 r 3 . . . r m ] [ x 1 x 2 r 3 . . . r n ] = [ 0 0 0 . . . 0 ] AX=0\\ \begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} y=\begin{bmatrix} r_1\\r_2\\r_3\\...\\r_m \end{bmatrix} \begin{bmatrix} x_1\\x_2\\r_3\\...\\r_n \end{bmatrix}= \begin{bmatrix} 0\\0\\0\\...\\0 \end{bmatrix} AX=0 r1r2r3...rm y= r1r2r3...rm x1x2r3...rn = 000...0
可以得到
y ⊥ r k y ⊥ a k r k y ⊥ ∑ k = 1 m a k r k y \perp r_k\\ y \perp a_kr_k\\ y \perp \sum_{k=1}^{m}a_kr_k yrkyakrkyk=1makrk
y y y N ( A ) N(A) N(A)空间任意一向量,所以得证。

N ( A ) 与 C ( A ⊤ ) N(A)与C(A^{\top}) N(A)C(A)是空间 R n R^{n} Rn中的正交全集。

3. 求解无解的 A X = b AX=b AX=b

求解无解的 A X = b AX=b AX=b是什么意思呢?
假设矩阵 m > n m \gt n m>n, b b b不能由 A A A中各列线性组合得到时。

实际情况就是,测量数据多于实际需要数据;

测量数据中可能混入了出错的数据,我们需要把错误的数据给筛选出去。

解决办法: 同时左乘 A ⊤ A^{\top} A变为了一个对称矩阵。
A X = b ⟶ A ⊤ A X ^ = A ⊤ b AX=b \longrightarrow A^{\top}A\hat{X}=A^{\top}b AX=bAAX^=Ab

N ( A ⊤ A ) N(A^{\top}A) N(AA)
不一定总可逆。

若矩阵
A = [ 1 1 1 2 1 5 ] A ⊤ = [ 1 1 1 1 2 5 ] A ⊤ A = [ 3 8 8 30 ] A= \begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 5\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 5\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 8\\ 8 & 30\\ \end{bmatrix} A= 111125 A=[111215]AA=[38830]
此时 A ⊤ A A^{\top}A AA可逆


A = [ 1 1 1 1 1 1 ] A ⊤ = [ 1 1 1 1 1 1 ] A ⊤ A = [ 3 3 3 3 ] A= \begin{bmatrix} 1 & 1\\ 1 & 1\\ 1 & 1\\ \end{bmatrix} A^{\top}= \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ \end{bmatrix}\\ A^{\top}A= \begin{bmatrix} 3 & 3\\ 3 & 3\\ \end{bmatrix} A= 111111 A=[111111]AA=[3333]
此时 A ⊤ A A^{\top}A AA不可逆。

性质
N ( A ⊤ A ) = N ( A ⊤ ) r a n k ( A ⊤ A ) = r a n k ( A ) N(A^{\top}A)=N(A^{\top})\\ rank(A^{\top}A)=rank(A) N(AA)=N(A)rank(AA)=rank(A)

下节再证明吧。

  • 27
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值