线性代数笔记17--行列式及其性质

1. 行列式

符号标识 d e t A = ∣ A ∣ det A = |A| detA=A

1.1 基本性质
  • 性质 1 1 1
    单位矩阵的行列式为1: d e t   I = 1 det\ I=1 det I=1
  • 性质 2 2 2
    行列式两行交换,行列式取反。
    A ⟶ s w a p   r o w i , r o w j A ′ d e t A ′ = − d e t A A\stackrel{swap\ row_i,row_j}\longrightarrow A'\\ det A'= -detA Aswap rowi,rowjAdetA=detA
  • 性质 3 3 3
    3a: 将行列式某一行乘倍数后行列等于变换前行列式值乘相应倍数
    d e t [ t a t b c d ] = t × d e t [ a b c d ] det \begin{bmatrix} t a & tb\\ c & d \end{bmatrix} =t \times det \begin{bmatrix} a & b\\ c & d \end{bmatrix} det[tactbd]=t×det[acbd]
    3b: 对于行列式来说,可以对某行进行分解展开
    d e t [ a + a ′ b + b ′ c d ] = d e t [ a b c d ] + d e t [ a ′ b ′ c d ] det \begin{bmatrix} a + a' & b + b'\\ c & d \end{bmatrix} = det \begin{bmatrix} a & b\\ c & d \end{bmatrix} +det\begin{bmatrix} a' & b'\\ c & d \end{bmatrix} det[a+acb+bd]=det[acbd]+det[acbd]
1.2 推导性质
  • 性质 4 4 4
    行列式两行相等,行列式为0
    d e t   A ( m , n ) = 0 i f   r o w i = r o w j ∧ i ≠ j det\ A(m,n) =0\quad if\ row_i=row_j \wedge i \ne j det A(m,n)=0if rowi=rowji=j
    根据性质2,交换这两行符号相反还相等则行列式值为0

  • 性质 5 5 5
    行列式的某行减去其他行的任意倍数,行列式值不变。
    A = [ r 1 r 2 . . . r n ] A ′ = [ r 1 r 2 + k r j . . . r n ] d e t   A ′ = A A= \begin{bmatrix} r_1\\r_2\\...\\r_n \end{bmatrix}\\ A'= \begin{bmatrix} r_1\\r_2+kr_j\\...\\r_n \end{bmatrix}\\ det\ A'=A A= r1r2...rn A= r1r2+krj...rn det A=A
    根据性质 3 b 3b 3b A ′ A' A一定可以化为原行列式值和其他的值为0的行列式。
    d e t   A ′ = d e t   A + k   d e t   0 = d e t   A det\ A'=det\ A+k\ det\ 0 =det\ A det A=det A+k det 0=det A

  • 性质6
    行列式一行全为0,行列式值为0
    A = [ r 1 r 2 0 j . . . r n ] d e t   A = 0 A= \begin{bmatrix} r_1\\r_2\\0_j\\...\\r_n \end{bmatrix}\\ det\ A=0 A= r1r20j...rn det A=0
    证法一
    把乘数作用于全 0 0 0所在行,再运用性质 3 a 3a 3a
    A = 5 A d e t   A = 5   d e t A d e t   A = 0 A=5A\\ det\ A=5\ detA\\ det\ A =0 A=5Adet A=5 detAdet A=0
    证法二
    将原矩阵 0 0 0行所有元素填充任意非零数字,对该行乘 0 0 0倍数,再运用性质 3 a 3a 3a
    d e t   A = 0 d e t   A ′ d e t   A = 0 det\ A=0det\ A'\\ det\ A =0 det A=0det Adet A=0
    证法三
    将零行加上任意非0行,运用性质 4 4 4

  • 性质 7 7 7
    上三角矩阵与下三角矩阵行列式子值为对角线元素的乘机
    A = [ d 1 x x x x 0 d 2 x x x 0 0 d 3 x x 0 0 0 d 4 x 0 0 0 0 d 5 ] d e t   A = d 1 d 2 d 3 d 4 d 5 = ∏ i = 1 n d i A= \begin{bmatrix} d1 & x & x & x & x\\ 0 & d2 & x & x & x\\ 0 & 0 & d3 & x & x\\ 0 & 0 & 0 & d4 & x\\ 0 & 0 & 0 & 0 & d5\\ \end{bmatrix}\\ det\ A=d1d2d3d4d5=\prod_{i=1}^{n}d_i A= d10000xd2000xxd300xxxd40xxxxd5 det A=d1d2d3d4d5=i=1ndi
    证明
    可以先从单位矩阵开始
    d e t   I = 1 det\ I = 1\\ det I=1
    将对角线上元素乘对应的数值得到
    A ′ = [ d 1 0 0 0 0 0 d 2 0 0 0 0 0 d 3 0 0 0 0 0 d 4 0 0 0 0 0 d 5 ] d e t   A ′ = ∏ i = 1 n d i × d e t   I = ∏ i = 1 n d i A'= \begin{bmatrix} d1 & 0 & 0 & 0 & 0\\ 0 & d2 & 0 & 0 & 0\\ 0 & 0 & d3 & 0 & 0\\ 0 & 0 & 0 & d4 & 0\\ 0 & 0 & 0 & 0 & d5\\ \end{bmatrix}\\ det\ A'=\prod_{i=1}^{n}d_i \times det\ I=\prod_{i=1}^{n}d_i A= d100000d200000d300000d400000d5 det A=i=1ndi×det I=i=1ndi
    我们观察行列式 A ′ A' A第一行剩余列,可以加上任意值,且行列式值不改变(性质 5 5 5)。
    以相同的方式考虑行列式 A ′ A' A对角线右边其他元素。
    所以上三角矩阵的行列式值都相等。

  • 性质 8 8 8
    行列式为 0    ⟺    0\iff 0矩阵 A A A为奇异矩阵。
    说明少了主元,对角线上的值有 0 0 0

  • 性质 9 9 9
    两个方阵相乘的行列式值与两个方阵行列式值相乘相等。
    d e t   A B = ( d e t   A ) ( d e t   B ) det\ AB=(det\ A)(det\ B) det AB=(det A)(det B)
    可用来检验性质 8 8 8
    d e t   A A − 1 = d e t   I = 1 det\ AA^{-1}=det\ I=1 det AA1=det I=1
    d e t A − 1 = 1 / d e t   A detA^{-1}=1/det\ A detA1=1/det A
    方阵可逆,方阵行列式值非0,方阵满秩。
    d e t A 2 = ( d e t   A ) 2 detA^{2}=(det\ A)^2 detA2=(det A)2
    证明
    可以在不改变行列式值得情况下将任一行列式化作只剩对角线其他为 0 0 0的形式。

    A d   B d 为主对角形式 d e t   A = d e t   A d d e t   B = d e t   B d d e t   A B = d e t   A d B d 矩阵 A d B d 元素也只剩对角线,且为 A d B d 对应位置乘积 证明完毕 A_d\ B_d为主对角形式\\ det\ A=det\ A_d\\ det\ B=det\ B_d\\ det\ AB=det\ A_dB_d\\ 矩阵A_dB_d元素也只剩对角线,且为A_dB_d对应位置乘积\\ 证明完毕 Ad Bd为主对角形式det A=det Addet B=det Bddet AB=det AdBd矩阵AdBd元素也只剩对角线,且为AdBd对应位置乘积证明完毕

  • 性质 10 10 10
    方阵的转置行列式值与原方阵行列式值相等
    d e t   A ⊤ = d e t   A det\ A^{\top}= det\ A det A=det A
    证明
    方阵一定可以化为 L U LU LU的形式
    A = L U A=LU A=LU
    A ⊤ = ( L U ) ⊤ = U ⊤ L ⊤ A^{\top}=(LU)^{\top}=U^{\top}L^{\top} A=(LU)=UL
    d e t   A = d e t   ( L U ) = d e t   L   d e t   U d e t   A ⊤ = d e t ( U ⊤ L ⊤ ) = d e t   L ⊤ d e t   U ⊤ d e t   L = d e t   L ⊤   d e t   U = d e t   U ⊤ d e t   A = d e t   A ⊤ det\ A=det\ (LU)=det\ L\ det\ U\\ det\ A^{\top}=det(U^{\top}L^{\top})=det\ L^{\top}det\ U^{\top}\\ det\ L=det\ L^{\top}\ \\det\ U=det\ U^{\top}\\ det\ A = det\ A^{\top} det A=det (LU)=det L det Udet A=det(UL)=det Ldet Udet L=det L det U=det Udet A=det A

UPD

  • 2024/3/26 更正性质10中的错误:方阵的逆改为方阵的转置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值