积分第二中值定理的证明

1. 定义

f f f [ a , b ] [a, b] [a,b]上可积
(1) g ( x ) g(x) g(x) [ a , b ] [a, b] [a,b]上单调递减,且 ∀ x ∈ [ a , b ] , g ( x ) ≥ 0 \forall x \in [a, b], g(x) \ge 0 x[a,b],g(x)0;
那么 ∃ ξ ∈ [ a , b ] ,   s . t .   ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x \exists \xi \in [a, b], \ s.t.\ \int_a^b f(x)g(x)dx = g(a)\int_a^\xi f(x)dx ξ[a,b], s.t. abf(x)g(x)dx=g(a)aξf(x)dx
(2) g ( x ) g(x) g(x) [ a , b ] [a, b] [a,b]上单调递增,且 ∀ x ∈ [ a , b ] , g ( x ) ≥ 0 \forall x \in [a, b], g(x) \ge 0 x[a,b],g(x)0;
那么 ∃ ξ ∈ [ a , b ] ,   s . t .   ∫ a b f ( x ) g ( x ) d x = g ( b ) ∫ ξ b f ( x ) d x \exists \xi \in [a, b], \ s.t. \ \int_a^bf(x)g(x)dx = g(b)\int_\xi^bf(x)dx ξ[a,b], s.t. abf(x)g(x)dx=g(b)ξbf(x)dx

2. 证明

2.1 证明(1)

F ( x ) = ∫ a x f ( t ) d t , F ( a ) = 0 ; ∫ x i − 1 x i f ( t ) d t = F ( x i ) − F ( x i − 1 ) F(x) = \int_a^x f(t)dt, F(a) = 0; \int_{x_{i-1}}^{x_i} f(t)dt = F(x_i) - F(x_{i-1}) F(x)=axf(t)dt,F(a)=0;xi1xif(t)dt=F(xi)F(xi1)
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,则积分上限函数 F ( x ) F(x) F(x) [ a , b ] [a, b] [a,b]上连续,且在 [ a , b ] [a, b] [a,b]上有最大值和最小值。
M = sup ⁡ { F ( x ) : x ∈ [ a , b ] } , m = inf ⁡ { F ( x ) : x ∈ [ a , b ] } M = \sup\{F(x): x \in [a, b]\}, m = \inf\{ F(x): x \in [a, b]\} M=sup{F(x):x[a,b]},m=inf{F(x):x[a,b]}
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上有界;不妨设 ∣ f ( x ) ∣ < L , x ∈ [ a , b ] |f(x)| < L, x \in [a, b] f(x)<L,x[a,b]
由于 g ( x ) g(x) g(x)单调,那么 g ( x ) g(x) g(x)可积。
g ( x ) g(x) g(x)可积得到, ∀ ϵ > 0 , ∃ π : a = x 0 < x 1 < ⋯ < x n = b ,   s . t .   ∑ i = 1 n ω i Δ x i < ϵ L \forall \epsilon > 0, \exists \pi: a = x_0 < x_1 < \cdots < x_n = b, \ s.t. \ \sum\limits_{i=1}^n \omega_i \Delta x_i < \frac{\epsilon}{L} ϵ>0,π:a=x0<x1<<xn=b, s.t. i=1nωiΔxi<Lϵ
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,可得:
∫ a b f ( x ) g ( x ) d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x ) d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i − 1 ) + g ( x i − 1 ) ] d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i − 1 ) ] d x + ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i − 1 ) d x \begin{align*} \int_a^b f(x)g(x)dx &= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x)dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1}) + g(x_{i-1})]dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1})]dx + \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx \end{align*} abf(x)g(x)dx=i=1nxi1xif(x)g(x)dx=i=1nxi1xif(x)[g(x)g(xi1)+g(xi1)]dx=i=1nxi1xif(x)[g(x)g(xi1)]dx+i=1nxi1xif(x)g(xi1)dx
我们令 I = ∫ a b f ( x ) g ( x ) d x , I 1 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i − 1 ) ] d x , I 2 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i − 1 ) d x I = \int_a^b f(x)g(x)dx, I_1 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1})]dx, I_2 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx I=abf(x)g(x)dx,I1=i=1nxi1xif(x)[g(x)g(xi1)]dx,I2=i=1nxi1xif(x)g(xi1)dx;显然有 I = I 1 + I 2 I = I_1 + I_2 I=I1+I2
对于 I 1 I_1 I1, 有 I 1 = ∫ a b f ( x ) g ( x ) d x ≤ ∑ i = 1 n ∣ f ( x ) ∣ ∣ g ( x ) − g ( x i − 1 ) ∣ d x ≤ L ∑ i = 1 n ∣ g ( x ) − g ( x i − 1 ) ∣ d x ≤ L ∑ i = 1 n ω i Δ x i < L ϵ L = ϵ I_1 = \int_a^b f(x)g(x)dx \le \sum\limits_{i=1}^n |f(x)||g(x) - g(x_{i-1})|dx \le L\sum\limits_{i=1}^n |g(x) - g(x_{i-1})|dx \le L \sum\limits_{i=1}^n \omega_i \Delta x_i < L \frac{\epsilon}{L} = \epsilon I1=abf(x)g(x)dxi=1nf(x)∣∣g(x)g(xi1)dxLi=1ng(x)g(xi1)dxLi=1nωiΔxi<LLϵ=ϵ, 因此 I 1 = 0 , I = I 2 I_1 = 0, I = I_2 I1=0,I=I2
对于 I 2 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i − 1 ) d x = ∑ i = 1 n g ( x i − 1 ) ∫ x i − 1 x i f ( x ) d x I_2= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx = \sum\limits_{i=1}^n g(x_{i-1}) \int_{x_{i-1}}^{x_i}f(x)dx I2=i=1nxi1xif(x)g(xi1)dx=i=1ng(xi1)xi1xif(x)dx, 又 ∫ x i − 1 x i f ( x ) d x = F ( x i ) − F ( x i − 1 ) \int_{x_{i-1}}^{x_i} f(x)dx = F(x_i) - F(x_{i-1}) xi1xif(x)dx=F(xi)F(xi1); 因此 I 2 = ∑ i = 1 n g ( x i − 1 ) ( F ( x i ) − F ( x i − 1 ) ) I_2 = \sum\limits_{i=1}^n g(x_{i-1})(F(x_i) - F(x_{i-1})) I2=i=1ng(xi1)(F(xi)F(xi1))
我们引入阿贝尔变换:
A i = ∑ j = 1 i a i ∑ i = 1 n a i b i + ∑ i = 2 n A i − 1 b i = ∑ i = 1 n A i b i ∑ i = 1 n a i b i = ∑ i = 1 n A i b i − ∑ i = 2 n A i − 1 b i = ∑ i = 1 n A i b i − ∑ i = 1 n − 1 A i b i + 1 = A n b n + ∑ i = 1 n − 1 A i ( b i − b i + 1 ) \begin{align*} A_i = \sum\limits_{j=1}^i a_i \\ \sum\limits_{i=1}^n a_i b_i + \sum\limits_{i=2}^n A_{i-1}b_i = \sum\limits_{i=1}^n A_ib_i\\ \sum\limits_{i=1}^n a_i b_i &= \sum\limits_{i=1}^n A_i b_i - \sum\limits_{i=2}^n A_{i-1}b_i \\ &= \sum\limits_{i=1}^n A_i b_i - \sum\limits_{i=1}^{n-1} A_i b_{i+1}\\ &= A_n b_n + \sum\limits_{i=1}^{n-1} A_i(b_i - b_{i+1})\\ \end{align*} Ai=j=1iaii=1naibi+i=2nAi1bi=i=1nAibii=1naibi=i=1nAibii=2nAi1bi=i=1nAibii=1n1Aibi+1=Anbn+i=1n1Ai(bibi+1)
I 2 I_2 I2作阿贝尔变换得 I 2 = ∑ i = 1 n g ( x i − 1 ) ( F ( x i ) − F ( x i − 1 ) ) = ∑ i = 1 n − 1 F ( x i ) ( g ( x i − 1 ) − g ( x i ) ) + g ( x n − 1 ) F ( x n ) I_2 = \sum\limits_{i=1}^n g(x_{i-1})(F(x_i) - F(x_{i-1})) = \sum\limits_{i=1}^{n-1}F(x_i)(g(x_{i-1}) - g(x_i)) + g(x_{n-1})F(x_n) I2=i=1ng(xi1)(F(xi)F(xi1))=i=1n1F(xi)(g(xi1)g(xi))+g(xn1)F(xn)。\
m ≤ F ( x ) ≤ M , x ∈ [ a , b ] m \le F(x) \le M, x \in [a,b] mF(x)M,x[a,b], 将 I 2 I_2 I2值放缩不难得到 m g ( a ) ≤ I 2 ≤ M g ( a ) mg(a) \le I_2 \le Mg(a) mg(a)I2Mg(a); 即 I 2 = η g ( a ) , η ∈ [ m , M ] I_2 = \eta g(a), \eta \in [m, M] I2=ηg(a),η[m,M]
F ( x ) F(x) F(x)的介值性不难得到, ∃ ξ ∈ [ a , b ] ,   s . t .   F ( ξ ) = η \exists \xi \in [a, b], \ s.t. \ F(\xi) = \eta ξ[a,b], s.t. F(ξ)=η, 综上整理可得 ∃ ξ ∈ [ a , b ] ,   s . t .   g ( a ) ∫ a ξ f ( x ) d x = ∫ a b f ( x ) g ( x ) d x \exists \xi \in [a, b], \ s.t.\ g(a)\int_a^\xi f(x)dx= \int_a^b f(x)g(x)dx ξ[a,b], s.t. g(a)aξf(x)dx=abf(x)g(x)dx

2.2 证明(2)

F ( x ) = ∫ x b f ( t ) d t , F ( b ) = 0 ; ∫ x i − 1 x i f ( t ) d t = F ( x i − 1 ) − F ( x i ) F(x) = \int_x^b f(t)dt, F(b) = 0; \int_{x_{i-1}}^{x_i} f(t)dt = F(x_{i-1}) - F(x_{i}) F(x)=xbf(t)dt,F(b)=0;xi1xif(t)dt=F(xi1)F(xi)
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,则积分上限函数 F ( x ) F(x) F(x) [ a , b ] [a, b] [a,b]上连续,且在 [ a , b ] [a, b] [a,b]上有最大值和最小值。
M = sup ⁡ { F ( x ) : x ∈ [ a , b ] } , m = inf ⁡ { F ( x ) : x ∈ [ a , b ] } M = \sup\{F(x): x \in [a, b]\}, m = \inf\{ F(x): x \in [a, b]\} M=sup{F(x):x[a,b]},m=inf{F(x):x[a,b]}
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上有界;不妨设 ∣ f ( x ) ∣ < L , x ∈ [ a , b ] |f(x)| < L, x \in [a, b] f(x)<L,x[a,b]
由于 g ( x ) g(x) g(x)单调,那么 g ( x ) g(x) g(x)可积。
g ( x ) g(x) g(x)可积得到, ∀ ϵ > 0 , ∃ π : a = x 0 < x 1 < ⋯ < x n = b ,   s . t .   ∑ i = 1 n ω i Δ x i < ϵ L \forall \epsilon > 0, \exists \pi: a = x_0 < x_1 < \cdots < x_n = b, \ s.t. \ \sum\limits_{i=1}^n \omega_i \Delta x_i < \frac{\epsilon}{L} ϵ>0,π:a=x0<x1<<xn=b, s.t. i=1nωiΔxi<Lϵ
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,可得:
∫ a b f ( x ) g ( x ) d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x ) d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i ) + g ( x i ) ] d x = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i ) ] d x + ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i ) d x \begin{align*} \int_a^b f(x)g(x)dx &= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x)dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i}) + g(x_{i})]dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i})]dx + \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx \end{align*} abf(x)g(x)dx=i=1nxi1xif(x)g(x)dx=i=1nxi1xif(x)[g(x)g(xi)+g(xi)]dx=i=1nxi1xif(x)[g(x)g(xi)]dx+i=1nxi1xif(x)g(xi)dx
我们令 I = ∫ a b f ( x ) g ( x ) d x , I 1 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) [ g ( x ) − g ( x i ) ] d x , I 2 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i ) d x I = \int_a^b f(x)g(x)dx, I_1 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i})]dx, I_2 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx I=abf(x)g(x)dx,I1=i=1nxi1xif(x)[g(x)g(xi)]dx,I2=i=1nxi1xif(x)g(xi)dx;显然有 I = I 1 + I 2 I = I_1 + I_2 I=I1+I2
对于 I 1 I_1 I1, 有 I 1 = ∫ a b f ( x ) g ( x ) d x ≤ ∑ i = 1 n ∣ f ( x ) ∣ ∣ g ( x ) − g ( x i ) ∣ d x ≤ L ∑ i = 1 n ∣ g ( x ) − g ( x i ) ∣ d x ≤ L ∑ i = 1 n ω i Δ x i < L ϵ L = ϵ I_1 = \int_a^b f(x)g(x)dx \le \sum\limits_{i=1}^n |f(x)||g(x) - g(x_{i})|dx \le L\sum\limits_{i=1}^n |g(x) - g(x_{i})|dx \le L \sum\limits_{i=1}^n \omega_i \Delta x_i < L \frac{\epsilon}{L} = \epsilon I1=abf(x)g(x)dxi=1nf(x)∣∣g(x)g(xi)dxLi=1ng(x)g(xi)dxLi=1nωiΔxi<LLϵ=ϵ, 因此 I 1 = 0 , I = I 2 I_1 = 0, I = I_2 I1=0,I=I2
对于 I 2 = ∑ i = 1 n ∫ x i − 1 x i f ( x ) g ( x i ) d x = ∑ i = 1 n g ( x i ) ∫ x i − 1 x i f ( x ) d x I_2= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx = \sum\limits_{i=1}^n g(x_{i}) \int_{x_{i-1}}^{x_i}f(x)dx I2=i=1nxi1xif(x)g(xi)dx=i=1ng(xi)xi1xif(x)dx, 又 ∫ x i − 1 x i f ( x ) d x = F ( x i − 1 ) − F ( x i ) \int_{x_{i-1}}^{x_i} f(x)dx = F(x_{i-1}) - F(x_{i}) xi1xif(x)dx=F(xi1)F(xi); 因此 I 2 = ∑ i = 1 n g ( x i ) ( F ( x i − 1 ) − F ( x i ) ) I_2 = \sum\limits_{i=1}^n g(x_{i})(F(x_{i-1}) - F(x_{i})) I2=i=1ng(xi)(F(xi1)F(xi))
I 2 I_2 I2作如下变化:
∑ i = 1 n g ( x i ) ( F ( x i − 1 ) − F ( x i ) ) = ∑ i = 1 n g ( x i ) F ( x i − 1 ) − ∑ i = 1 n g ( x i ) F ( x i ) = ∑ i = 0 n − 1 g ( x i + 1 ) F ( x i ) − ∑ i = 1 n g ( x i ) F ( x i ) = g ( x 1 ) F ( x 0 ) + ∑ i = 1 n − 1 ( g ( x i + 1 ) − g ( x i ) ) F ( x i ) − g ( x n ) F ( x n ) ( x n = b , F ( x n ) = F ( b ) = 0 ) = g ( x 1 ) F ( x 0 ) + ∑ i = 1 n − 1 ( g ( x i + 1 ) − g ( x i ) ) F ( x i ) \begin{align*} \sum\limits_{i=1}^n g(x_{i})(F(x_{i-1}) - F(x_i)) &= \sum\limits_{i=1}^n g(x_i)F(x_{i-1}) - \sum\limits_{i=1}^n g(x_i)F(x_i) \\ &= \sum\limits_{i=0}^{n-1} g(x_{i+1})F(x_i) - \sum\limits_{i=1}^{n} g(x_i)F(x_i) \\ &= g(x_1)F(x_0) + \sum\limits_{i=1}^{n-1} (g(x_{i+1}) - g(x_i))F(x_i) - g(x_n)F(x_n) \quad (x_n = b, F(x_n) = F(b) = 0)\\ &= g(x_1)F(x_0) + \sum\limits_{i=1}^{n-1} (g(x_{i+1}) - g(x_i))F(x_i) \end{align*} i=1ng(xi)(F(xi1)F(xi))=i=1ng(xi)F(xi1)i=1ng(xi)F(xi)=i=0n1g(xi+1)F(xi)i=1ng(xi)F(xi)=g(x1)F(x0)+i=1n1(g(xi+1)g(xi))F(xi)g(xn)F(xn)(xn=b,F(xn)=F(b)=0)=g(x1)F(x0)+i=1n1(g(xi+1)g(xi))F(xi)
m ≤ F ( x ) ≤ M , x ∈ [ a , b ] m \le F(x) \le M, x \in [a,b] mF(x)M,x[a,b], 将 I 2 I_2 I2值放缩不难得到 m g ( b ) ≤ I 2 ≤ M g ( b ) mg(b) \le I_2 \le Mg(b) mg(b)I2Mg(b); 即 I 2 = η g ( a ) , η ∈ [ m , M ] I_2 = \eta g(a), \eta \in [m, M] I2=ηg(a),η[m,M]
F ( x ) F(x) F(x)的介值性不难得到,
∃ ξ ∈ [ a , b ] ,   s . t .   F ( ξ ) = η \exists \xi \in [a, b], \ s.t. \ F(\xi) = \eta ξ[a,b], s.t. F(ξ)=η, 综上整理可得 ∃ ξ ∈ [ a , b ] ,   s . t .   g ( b ) ∫ ξ b f ( x ) d x = ∫ a b f ( x ) g ( x ) d x \exists \xi \in [a, b], \ s.t.\ g(b)\int_\xi^b f(x)dx= \int_a^b f(x)g(x)dx ξ[a,b], s.t. g(b)ξbf(x)dx=abf(x)g(x)dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值