文章目录
前言
本笔记记录自B站《线性代数》高清教学视频 “惊叹号”系列 宋浩老师第四课
根据前面的学习,我们知道性质在行和列同时适用,所以我们举例一般用行来举例
一、余子式和代数余子式
行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算,为此,引入了余子式和代数余子式的概念。
余子式
在n阶行列式中,划去元素 a i j a_{ij} aij所在的第i行与第j列的元素,剩下的元素不改变原来的顺序所构成的n-1阶行列式称为元素 a i j a_{ij} aij的余子式。余子式的符号我们用 M i j M_{ij} Mij来表示
例:下面行列式中, a 23 a_{23} a23的余子式为
D = ∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ D=\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{vmatrix} D=
15913261014371115481216
M 32 = ∣ 1 3 4 5 7 8 13 15 16 ∣ M_{32}=\begin{vmatrix} 1 & 3 & 4 \\ 5 & 7 & 8 \\ 13 & 15 & 16 \end{vmatrix} M32=
151337154816
总结:余子式是指某一个元素来说的,余:指去掉所在行去掉所在列后剩余的,子:指它为原始行列式的子集,式:指它仍然是一个行列式
代数余子式
我们得到余子式 M i j M_{ij} Mij后,将余子式 M i j M_{ij} Mij再乘以-1的i+j次幂记为 A i j A_{ij} Aij, A i j A_{ij} Aij叫做元素 a i j a_{ij} aij的代数余子式。
A 32 = ( − 1 ) 3 + 2 ∣ 1 3 4 5 7 8 13 15 16 ∣ A_{32}=(-1)^{3+2}\begin{vmatrix} 1 & 3 & 4 \\ 5 & 7 & 8 \\ 13 & 15 & 16 \end{vmatrix} A32=(−1)3+2
151337154816
二、行列式按行(列)展开
1.定理1
行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和
按行展开: D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , ⋯ , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}(i=1,2,\cdots,n) D=ai1Ai1+ai2Ai2+⋯+ainAin(i=1,2,⋯,n)
或
按列展开: D =