1. 定义
一个比较重要的数论函数,定义如下
μ
(
n
)
=
{
1
n
=
1
(
−
1
)
k
n
=
p
1
p
2
⋯
p
k
0
∃
p
∣
n
,
p
2
∣
n
\mu(n) = \begin{equation*} \begin{cases} 1& \quad n=1\\ (-1)^{k} &n=p_1p_2\cdots p_k\\ 0 & \exists p \mid n, p^2 \mid n \end{cases} \end{equation*}
μ(n)=⎩
⎨
⎧1(−1)k0n=1n=p1p2⋯pk∃p∣n,p2∣n
举个例子
μ
(
6
)
=
1
\mu(6) =1\\
μ(6)=1
6
=
2
×
3
6=2\times3
6=2×3,因此6有两个不重复的质因数,
k
=
2
k=2
k=2,
μ
(
6
)
=
(
−
1
)
2
=
1
\mu(6)=(-1)^2=1
μ(6)=(−1)2=1
另外一个例子
μ
(
20
)
=
0
\mu(20) =0
μ(20)=0
20
=
2
2
×
5
20=2^2\times5
20=22×5, 存在
p
=
2
,
2
∣
20
2
2
=
4
∣
20
p=2, 2 \mid 20 \ 2^2=4 \mid 20
p=2,2∣20 22=4∣20,因此
μ
(
20
)
=
0
\mu(20)=0
μ(20)=0。
2. 性质
- 因数的函数和
∑ d ∣ n μ ( d ) = { 1 n = 1 0 n ≠ 1 \sum_{d | n} \mu(d) = \begin{equation*} \begin{cases} 1 \quad n=1\\ 0 \quad n \ne 1 \end{cases} \end{equation*} d∣n∑μ(d)={1n=10n=1
n = 1 n=1 n=1时, ∑ d ∣ n μ ( d ) = μ ( 1 ) = 1 \sum_{d|n} \mu(d) =\mu(1)=1 ∑d∣nμ(d)=μ(1)=1。
当 n ≠ 1 n \ne1 n=1时,根据唯一分解定理 n = p 1 a 1 p 2 a 2 ⋯ p k a k n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} n=p1a1p2a2⋯pkak。
根据 μ ( n ) \mu(n) μ(n)函数的性质,我们只需要考虑因数 d d d,
满足 ∀ p ∣ d , p 2 ∤ d \forall p \mid d, p^{2} \nmid d ∀p∣d,p2∤d的情况。
也就是每个质因数选或者不选进行组合的情况,显然这是一个二项式系数的问题
∑ d ∣ n μ ( d ) = ( k 0 ) + ( k 1 ) ( − 1 ) 1 + ⋯ + ( k k ) ( − 1 ) k = ( 1 + − 1 ) k = 0 \begin{align*} \sum_{d|n} \mu(d) &={k \choose 0}+{k \choose1}(-1)^1+\cdots+{k \choose k}(-1)^{k} \\&=(1 +-1)^{k} \\&=0 \end{align*} d∣n∑μ(d)=(0k)+(1k)(−1)1+⋯+(kk)(−1)k=(1+−1)k=0
- 积性函数
gcd ( a , b ) = 1 , μ ( a b ) = μ ( a ) μ ( b ) \gcd(a,b)=1, \mu(ab)=\mu(a)\mu(b) gcd(a,b)=1,μ(ab)=μ(a)μ(b)
当
a
=
1
a=1
a=1或
b
=
1
b=1
b=1时
μ
(
a
b
)
=
μ
(
a
)
μ
(
1
)
=
μ
(
a
)
μ
(
a
b
)
=
μ
(
b
)
μ
(
1
)
=
μ
(
b
)
\mu(ab)=\mu(a)\mu(1)=\mu(a)\\ \mu(ab)=\mu(b)\mu(1)=\mu(b)\\
μ(ab)=μ(a)μ(1)=μ(a)μ(ab)=μ(b)μ(1)=μ(b)
当
∃
p
2
∣
a
\exist p^2 \mid a
∃p2∣a或
p
2
∣
b
p^2 \mid b
p2∣b时
μ
(
a
)
=
0
o
r
μ
(
b
)
=
0
p
2
∣
a
b
,
μ
(
a
b
)
=
μ
(
a
)
μ
(
b
)
=
0
\mu(a) =0 \ or\ \mu(b)=0\\ p^{2} \mid ab, \mu(ab)=\mu(a)\mu(b)=0
μ(a)=0 or μ(b)=0p2∣ab,μ(ab)=μ(a)μ(b)=0
其他情况,假设
a
=
p
1
p
2
⋯
p
m
b
=
q
1
q
2
⋯
q
n
μ
(
a
)
=
(
−
1
)
m
,
μ
(
b
)
=
(
−
1
)
n
a=p_1p_2\cdots p_m\\ b=q_1q_2\cdots q_n\\ \mu(a)=(-1)^m, \mu(b)=(-1)^{n}
a=p1p2⋯pmb=q1q2⋯qnμ(a)=(−1)m,μ(b)=(−1)n
由于
gcd
(
a
,
b
)
=
1
\gcd(a,b)=1
gcd(a,b)=1,因此
∀
1
≤
i
≤
m
,
1
≤
j
≤
n
;
p
i
≠
q
j
a
b
=
p
1
p
2
⋯
p
m
q
1
q
2
⋯
q
n
μ
(
a
b
)
=
(
−
1
)
m
+
n
\forall 1 \le i \le m, 1 \le j \le n; p_i \ne q_j\\ ab=p_1p_2\cdots p_mq_1q_2\cdots q_n\\ \mu(ab)=(-1)^{m+n}
∀1≤i≤m,1≤j≤n;pi=qjab=p1p2⋯pmq1q2⋯qnμ(ab)=(−1)m+n
因此
μ
(
a
)
μ
(
b
)
=
μ
(
a
b
)
=
(
−
1
)
m
+
n
\mu(a)\mu(b)=\mu(ab)=(-1)^{m+n}
μ(a)μ(b)=μ(ab)=(−1)m+n
莫比乌斯函数的积性得证。