原题链接:http://poj.org/problem?id=1125
题目大意:要使消息最快传播到每个业务员。输入:第一行是表示有N个业务员,下面的N行,每一行表示第N个业务员与其他业务员传播消息的时间
3 //有三个业务员 2 2 4 3 5 //1号业务员可以跟2号业务员传播,时间是4分钟,可以和3号业务员传播,时间是5分钟 2 1 2 3 6 2 1 2 2 2
解题思路:实际是求一个无向图的最短路径,可以用Floyd算法。
Floyd是基于动态规划的算法
设D[i][j][k] 为从i到j只以1~K中的节点为中间节点的最短路径的长度,则有DP公式
D[i][j][k] = min(D[i][j][k-1], D[i][k][k-1] + D[k][j][k-1])。
所以我们只需要分别求出以每个业务员为起点所获得的Floyd结果中的最大值
然后取这些最大值中的最小值,该结果就是最短时间,并且该结果的业务员就是应该选择作为源头的业务员
详细请看代码:
#include <iostream>
using namespace std;
const int INF = 20;
int N, g[101][101];
void floyd()
{
for (int k=1; k<=N; k++)
for (int i=1; i<=N; i++)
for (int j=1; j<=N; j++)
if (i!=j && g[i][j] > g[i][k] + g[k][j])
g[i][j] = g[i][k] + g[k][j];
}
int main()
{
while (1)
{
memset(g, INF, sizeof(g));
cin>>N;
if (N == 0) break;
//data in
for (int i=1; i<=N; i++)
{
int a;
cin>>a;
for (int j=1; j<=a; j++)
{
int sb,time;
cin>>sb>>time;
g[i][sb] = time;
}
}
//process
floyd();
int maxlength;
int source_sb;
int outtime = INF;
for (int n=1; n<=N; n++)
{
maxlength = 0;
for(int m=1; m<=N; m++)
if(n!=m && maxlength<g[n][m]) //寻找i到j的最长路径
maxlength = g[n][m];
if(outtime > maxlength)
{
outtime = maxlength; //寻找最长路径中的最小值
source_sb = n; //该短路所在路径的源头业务员
}
}
//data out
if(outtime < INF)
cout<<source_sb<<' '<<outtime<<endl;
else
cout<<"disjoint"<<endl;
}
return 0;
}