【弹性计算】弹性裸金属服务器和神龙虚拟化(二):适用场景

弹性裸金属服务器》系列,共包含以下文章:

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

公共云服务提供商推出 弹性裸金属服务器,很显然是作为虚拟机云服务器的有效补充,而不是和自家虚拟机云服务器形成竞争关系。那么弹性裸金属服务器适合哪些场景呢?

1.混合云和第三方虚拟化软件部署

伴随着公共云的高速发展,通过混合云打通用户线下专有云和线上公共云资源的需求日趋强烈。OpenStack 和 VMware 等 IaaS Stack 在公共云上部署,同时管理用户线上和线下 IaaS 资源,可以看到,VMware Cloud on Alibaba Cloud 就属于此种混合云业务应用场景。

而 OpenStack 和 VMware Cloud 等 IaaS Stack 在公共云上部署,最为关键的就是要求公共云提供 CPU 虚拟化的能力,否则在普通虚拟机中部署嵌套虚拟化技术,其性能完全无法接受。具体到 Intel x86 CPU 体系,则要求公共云平台对外提供计算资源的完整虚拟化特性(Intel VT-x 和 VT-d 等硬件虚拟化技术),使得 VMware ESXi、KVM、 Xen、Hyper-V 等虚拟化平台和技术能够平滑上云。而弹性裸金属服务器就能满足这个要求。

2.高隔离容器部署

容器技术具备轻量敏捷等优势,正在成为 DevOps 主流技术。相对于公共云 VM 部署容器,使用弹性裸金属服务器部署容器具备零虚拟化开销等性能优势,如下图所示。
在这里插入图片描述
同时我们注意到 Clear Container、RunV,以及 Kata Container 等具备高隔离高安全特性的新型容器技术,依赖 CPU 完整虚拟化特性(比如 Intel VT-x)。此种高隔离高安全的容器技术只可能部署在弹性裸金属服务器上。

3.高质量计算服务

高质量计算服务指 零资源争抢、零虚拟化开销和高隔离高安全

虚拟化技术在提高数据中心资源利用率的同时,引入了资源争抢等业务难题。多个 VM 运行在一台物理服务器上,CPU 核、L1/L2/LLC 缓存、内存带宽等 CPU 和内存子系统资源通过虚拟化技术抽象和切分,同时提供给多个 VM 使用。传统的虚拟化技术很难根本解决各 VM 间资源的争抢问题。而弹性裸金属服务器不存在此问题。

4.高速低时延 RDMA 网络支持场景

RDMA 网络在超低时延和减轻 CPU 负载等方面优势明显,但是在网络虚拟化支持方面的短板明显;而公共云网络部署的关键是通过网络虚拟化实现网络资源的租户隔离。弹性裸金属服务器在支持原生 ROCE 和 IB RDMA 网络方面,具有天然优势。

因此可以看到各家云服务提供商均以裸金属服务器支持 RDMA 网络,以此部署满足 HPC 和异构计算的高速低时延互联需求。

5.RISC CPU 支持

Intel x86 体系结构对 CPU 虚拟化技术等软硬件的支持最为完善,加上 Intel Xeon x86 处理器在服务器市场的垄断地位,主流公共云 IaaS 虚拟化技术均基于 Intel Xeon x86。

但是必须看到,对于特定细分市场,RISC CPU 仍然具备相当优势。比如 Power ISA CPU 在金融保险等市场的优势地位,以及 ARMv8 ISA 在新兴服务器市场崭露头角。如何支持 Power 和 ARMv8 等 RISC 服务器,是公共云服务提供商必须回答的问题。

使用弹性裸金属服务器无须 CPU 和内存虚拟化技术的特别适配,就能够快速将 Power 和 ARMv8 等处理器在公共云上线部署。

6.GPU 性能无损输出

GPU 产品对虚拟化技术支持有限,通过传统虚拟机方式输出 GPU 计算性能,会有严重的性能下降,而弹性裸金属服务器可做到 GPU 性能无损输出。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G皮T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值