UFLDL 06 PCA 主成分分析法

引言

Principal Components Analysis,是一种无监督学习方法,主要是用来将特征的主要分成找出,并去掉基本无关的成分,从而达到降维的目的。PCA的用处很多,此处不做详述。

基本原理

  • 什么是主成分
    实际情况下,很多特征都是有重复的内容的,他们彼此包含一部分信息,但是我们可以利用他们的组合得到一个包含更多信息的新特征,其中可以得到的包含最多信息的新特征就是这些特征中最重要的特征。假设原来的特征是X,变化之后的特征是F,则:
    这里写图片描述
  • 新特征的特性
    如上所述,新的特征是各个老特征的线性组合,他们想尽可能的包含尽量多的信息,同时又注意到有很多新的特征,其数量与老特征的数量相同。如果每一个老特征都包含最大的信息量的话,那么所有的新特征都是相同的,为了避免相同,这里采取了正交的方法,即各个新特征相互正交,以此来避免包含相同的信息。这也就是说F2是在F1所包含的信息外的能包含最大的信息量的新特征。
  • 信息量的计量
    首先要明白信息量的作用,信息量越大,越能区分所有的样本。如何来计量主成分的信息量呢?试想如果有10000个样本的某个特征都集中在一个值附近,那么这个特征能很好的区分所有的样本么?很明显不可以。也就是说如果某个特征的取值范围很广,那么他的信息量越大,所以这里用了方差的性质来计量信息量的大小。
    综上,
    1. 主成分间相互独立
    2. 越重要的主成分,方差越大
  • 数学模型
    现在的问题就只剩下,如何用数学模型来表征这些特征了
    首先,相互独立的重要特征就是不同主成分间协方差为0,也就是协方差矩阵为对角阵
    其次,上面所说的对角阵的特征值就是主成分的方差
    所以得到以下方程:
    这里写图片描述
    将X归一化可得
    协方差矩阵与矩阵乘积的关系:
    http://blog.codinglabs.org/articles/pca-tutorial.html

这里写图片描述
这里写图片描述
整理方程得到A的系数矩阵
这里写图片描述
也就是说 λ 是R的特征值,A是其特征向量,都可以求出。由于 λ 也是主成分的方差,所以越大的 λ 值对应的主成分也就越重要。
http://wenku.baidu.com/link?url=TmMJrYEt4kTV1iKEs_b95QlfJ7Iog7gc1T-TTitDzi1pL_TKZU_p_7A05ct2bPlIbYtpCB0Qclxri7sZpm7t5HhW51K5oHL-CGnC6M_zpVq
基本原理都是根据上面链接的文章写的,感觉这里写的不明白的可以看看

实例解释

下面对应,ufldl上的实例做些基本的解释
1. ufldl中的 μ1 便是上面的 a1 ,都是对应 λ 最大的对应的经过预处理的X的特征向量
2. 新的特征中的值可以看做是由原特征为基的坐标对应的值转化为以F为基的新坐标中的值,及变化时需要左乘 AT

降维

经过上面的变化,已经将原来的特征转化为了新的特征,并且知道了新的特征的重要性,经过变化之后可能得到,部分新的特征的相对重要性非常小(得到的对应 λ 相对非常小),这就说明,这些新特征并不是很重要,所以可以将这些特征去掉
屡一下;
1. 计算原特征值的相关系数矩阵
2. 计算此相关系数矩阵的特征值和特征向量
3. 选择包含一定信息量的特征值对应的特征向量,再加上0向量,得到新的K
4. KTX 得到新的特征的数值
5. AKTX 得到还原之后在原特征下的值

图像应用

在处理普通的直接拍摄的图片时不需要进行方差的归一化,使用整个图片的均值进行零均值化操作即可
在处理别的图片的时候需要进行其他处理

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCA主成分分析)是一种常用的降维技术,它通过将原始数据投影到新的特征空间来实现数据的降维和去除冗余信息。下面是PCA主成分分析的步骤: 1. 数据标准化:首先,需要对原始数据进行标准化处理,确保数据的均值为0,方差为1。这一步骤可以保证不同尺度的数据能够被平等对待。 2. 计算协方差矩阵:接下来,需要计算数据的协方差矩阵。协方差矩阵反映了数据中不同特征之间的相关性。 3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,可以得到该矩阵的特征值和特征向量。特征向量代表了数据在新特征空间中的方向,而特征值代表了数据在这些方向上的重要程度。 4. 选择主成分:根据特征值的大小,可以选择最重要的特征向量作为新的特征空间的基。通常情况下,选择特征值较大的前k个特征向量作为主成分。 5. 构建投影矩阵:将选定的k个特征向量按列组成投影矩阵,用这个矩阵将原始数据投影到新的k维特征空间中。 6. 数据转换:最后,利用构建的投影矩阵,对原始数据进行线性变换,即将原始数据映射到新的k维特征空间中。这样就实现了数据的降维和去除冗余信息。 通过以上步骤,PCA主成分分析可以帮助我们在保留数据主要特征的基础上,将高维的原始数据转化为低维的新特征空间,从而方便我们进行进一步的数据分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值