一个时间序列可以分解为多个模型的组合
1.1 时间序列的组成
1.1.1 时间序列组成模式
三种时间序列模式(不计剩余残差部分)
1. 趋势Tend :比如线性趋势,先增加后降低的整体趋势
2. 季节性Seasonal :以时间为固定周期,呈现循环的特性
3. 周期性Cyclic:在以不固定周期不断震荡,通常周期性至少持续2年
下图就是讲时间序列分解之后的结果,应该比较容易理解上面的定义
下图是周期性的表现之一:
每个周期的震荡持续了6-10年,整体没有什么明显的趋势,第一幅图中trend包含了trend与cyclic
1.1.2 时间序列分解
可以将时间序列按下式分解为上面的几种模式,分解方式有相加方式或者相乘的方式如下:
yt=St+Tt+Et,
或者
yt=St×Tt×Et.
其中 St 为季节性模式部分, Tt 为包含趋势与周期性的模式部分, Et 为剩余残差部分
其各自的适用范围:
- 季节性和trend-cycle变动的量级不随时间变化,用加法模式
- 两者的波动随时间成比例,适用于乘法模式
- 乘法模式可以通过log变为加法模式:
yt=St×Tt×Et⟺logyt=logSt+logTt+logEt
还是看这幅图
注意右边有一个灰色的比例条,他表示同样尺寸的线段在不同图上的比例,上图可见残差的长度较小。
下面介绍几种图;
1. seasonal sub-series plots
将每个seasonal里面的子周期呈现
2. Seasonally adjusted data
不考虑seasonal的数据
1.2 Moving averages 移动平均
移动平均用于估计时间序列的趋势和周期
1.2.1 Moving average smoothing
简单来说就是用数值前后k个时间点的值的平均值来代替当时值
T^t=1m∑j=−k