故事背景
那是15年的春天,本文的作者和其他几个人,使用CNN做光流估计,于是FlowNet成了第一个用CNN做光流的模型,当时的结果还不足以和传统结果相匹配。2016年冬天,作者和一群小伙伴又基于Flow Net的工作进行了改进,效果得到了提升,可以与传统方法相匹敌。
15年的思想主要是把两张用来估计光流信息的图片输入网络,经过训练使网络学到光流信息,后面会讲到当时用到的两个网络。
作者
Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox
项目地址
http://lmb.informatik.uni-freiburg.de/Publications/2016/IMKDB16/
FlowNet1.0 地址
http://lmb.informatik.uni-freiburg.de/resources/binaries/
一句话总结
本文依然是用CNN来做光流估计,提出了一种训练方法,引入了Stack的结构,对小位移单独处理,提高了网络的效果。好评!
看点
- 训练时数据集的使用
- 网络结构
- 还有请留言:-D
0. 预备~
到了大家最喜欢看网络结构的时候了
这一节主要介绍在第一版FlowNet中的两个网络结构及几个数据库
0.1 FlowNetS
第一个模型:FlowNetS
主要特色:
- 输入由原来的一张图片变为了两张,通道数由3变为6
- 多层feature引入最后的Refinement模块,Refinement的具体结构将在后面涉及