几分钟走进神奇的光流|FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

故事背景

那是15年的春天,本文的作者和其他几个人,使用CNN做光流估计,于是FlowNet成了第一个用CNN做光流的模型,当时的结果还不足以和传统结果相匹配。2016年冬天,作者和一群小伙伴又基于Flow Net的工作进行了改进,效果得到了提升,可以与传统方法相匹敌。
15年的思想主要是把两张用来估计光流信息的图片输入网络,经过训练使网络学到光流信息,后面会讲到当时用到的两个网络。
作者
Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox
项目地址
http://lmb.informatik.uni-freiburg.de/Publications/2016/IMKDB16/
FlowNet1.0 地址
http://lmb.informatik.uni-freiburg.de/resources/binaries/

一句话总结

本文依然是用CNN来做光流估计,提出了一种训练方法,引入了Stack的结构,对小位移单独处理,提高了网络的效果。好评!

看点

  1. 训练时数据集的使用
  2. 网络结构
  3. 还有请留言:-D

0. 预备~

到了大家最喜欢看网络结构的时候了
这一节主要介绍在第一版FlowNet中的两个网络结构及几个数据库

0.1 FlowNetS

这里写图片描述
第一个模型:FlowNetS
主要特色:
- 输入由原来的一张图片变为了两张,通道数由3变为6
- 多层feature引入最后的Refinement模块,Refinement的具体结构将在后面涉及

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值