数字图像的概念性质

数字图像的概念(定义)

从物理和数学的角度看,图像是记录物体辐射能量的空间分布,这个分布是空间坐标时间坐标波长的函数:
I = f(x,y,z,λ,t),x,y,z是空间坐标,λ是波长,t是时间,I是像素点的强度。它表示活动的、彩色的/三维的视频图像。
通常,一幅图像可以被看成是空间各坐标点彩色强度的集合。对于静止图像,则与时间t无关;对于单色图像,则波长λ为常量;对于平面图,则于坐标z无关。
如表示一幅静止的平面单色图:**I=f(x,y)**或(r,g,b)=f(x,y)
在这里插入图片描述
表示图像的二维数组是连续的,将连续参数x,y和f取离散值后,图像被分割成很多小的网格,每个网格即为数字图像中的像素。一幅图像由许多像素构成,每个像素点包含反映图像在该点的明暗和颜色变化信息,这种图像叫做位图图像(bitmap)。
每个像素具有独立的属性。至少具有两个属性:像素的位置(x,y)和灰度值(F)。

像素之间的基本关系:

1)邻域:四邻域,八邻域,对角邻域。
2)连通性:像素是否相邻,灰度值是否满足特定的相似性原则。
3)距离:欧式距离、城市街区距离和棋盘距离。 在这里插入图片描述
在这里插入图片描述

描述数字图像的基本参数

空间分辨率:只对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。“像素点/单位长度”,习惯上也以水平方向的像素点与垂直方向像素点的乘积表示,如640x480。空间分辨率越低,图像质量越差,会出现棋盘模式。
灰度分辨率:灰度分辨率通常由存储每个灰度级别时用到的比特数来定。灰度级别越多,最终的图像细节越分明。灰度分辨率越低,图像质量越差,会出现虚假轮廓。
图像深度:各像素点数据位的位数即为像素深度。越深表现得颜色数量越多,图像得色彩越丰富。
图像数据容量:一幅图像的总像素点数目与每个像素点所需字节数的乘积。
不同图像分辨率、图像深度与图像数据量的关系:
在这里插入图片描述

参考文献

[1] 数字图像处理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏常青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值