导数

双变元

偏移问题,证明单调性

比如求证 x1+x2<2 x 1 + x 2 < 2 ,即证 f(x)f(2x)<>0 f ( x ) − f ( 2 − x ) <> 0 恒成立, f(x) f ( x ) (1,...) ( 1 , . . . ) 单调…,所以 x1<2x2 x 1 < 2 − x 2 ……

未知变量 )消掉 )用已知表示

x1,x2 x 1 , x 2 f(x)=ax+b+cx f ′ ( x ) = a x + b + c x 的零点 韦达

ex1. 若方程 f(x)=m(m<2) f ( x ) = m ( m < 2 ) 有两个相异实根 x1 x 1 , x2 x 2 ,且 x1<x2 x 1 < x 2 ,证明 x1x22<2 x 1 x 2 2 < 2
0<x1<1,x2>1 0 < x 1 < 1 , x 2 > 1
lnx2x2<f(2)x2>2 ln ⁡ x 2 − x 2 < f ( 2 ) ∴ x 2 > 2
g(x)=lnxxm,h(x)=g(x)g(2x2)=x2+2x2+3lnxln2 g ( x ) = ln ⁡ x − x − m , h ( x ) = g ( x ) − g ( 2 x 2 ) = − x 2 + 2 x 2 + 3 ln ⁡ x − ln ⁡ 2
h(x)=14x3+3x=(x2)2(x+1)x3 h ′ ( x ) = − 1 − 4 x 3 + 3 x = − ( x − 2 ) 2 ( x + 1 ) x 3
x>2,h(x)<0,h(x)<h(2)<0 x > 2 , h ′ ( x ) < 0 , h ( x ) < h ( 2 ) < 0
g(x)<g(2x2) ∴ g ( x ) < g ( 2 x 2 )
x1x22<2 ∴ x 1 x 2 2 < 2

x2,x1 x 2 , x 1 替换

ex2. f(x)=lnxmx f ( x ) = ln ⁡ x − m x m>=322 m >= 3 2 2 g(x)=2f(x)+x2 g ( x ) = 2 f ( x ) + x 2 两个极值点 x1,x2 x 1 , x 2 恰为 h(x)=lnxcx2bx h ( x ) = ln ⁡ x − c x 2 − b x 的零点,求 y=(x1x2)h(x1+x22) y = ( x 1 − x 2 ) h ′ ( x 1 + x 2 2 ) 的最小值
h(x)=0lnx1x2+c(x1+x2)(x2x1)+b(x2x1)=0 h ( x ) = 0 → ln ⁡ x 1 x 2 + c ( x 1 + x 2 ) ( x 2 − x 1 ) + b ( x 2 − x 1 ) = 0
y=(x1x2)(2x1+x2c(x1+x2)b) y = ( x 1 − x 2 ) ( 2 x 1 + x 2 − c ( x 1 + x 2 ) − b )
=2×x1x2x1+x2lnx1x2 = 2 × x 1 − x 2 x 1 + x 2 − ln ⁡ x 1 x 2
t=x1x2,t(0,12] t = x 1 x 2 , t ∈ ( 0 , 1 2 ]
y=24t+1lnt y = 2 − 4 t + 1 − ln ⁡ t
y=(t1)2t(t+1)2<0 y ′ = − ( t − 1 ) 2 t ( t + 1 ) 2 < 0
ymin=y(12)=23+ln2 y m i n = y ( 1 2 ) = − 2 3 + ln ⁡ 2

基本不等式: nk=1xk>=nnk=1xkn ∑ k = 1 n x k >= n ⋅ ∏ k = 1 n x k n

ex3. 证明 a<=4 a <= 4 时,k = 2 + \frac 2{x_1 + x_2}{x_1^2x_2^2} - \frac a{x_1x_2}
即证 x1x2+4x1x2>a x 1 x 2 + 4 x 1 x 2 > a .
x1x2+4x1x2>=3×x1x22x1x22x1x23=343>4 x 1 x 2 + 4 x 1 x 2 >= 3 × x 1 x 2 ⋅ 2 x 1 x 2 ⋅ 2 x 1 x 2 3 = 3 4 3 > 4

ex1+ex2>=2ex1+x22 e 1 x + e 2 x >= 2 e x 1 + x 2 2

ex4. 函数 f(x)=ae2x+bex f ( x ) = a e 2 x + b e x g(x)=x g ( x ) = x F(x)=f(x)g(x) F ( x ) = f ( x ) − g ( x ) 有两个不同的零点 x1 x 1 , x2 x 2 ,记 x0=x1+x22 x 0 = x 1 + x 2 2 ,对 a(0,+) ∀ a ∈ ( 0 , + ∞ ) bR b ∈ R ,试比较 f(x0) f ′ ( x 0 ) g(x0) g ′ ( x 0 ) 的大小
x2x1=a(ex2ex1)(ex2+ex1)+b(ex2ex1)>=2a(ex2ex1)ex1+x22+b(ex2ex1) x 2 − x 1 = a ( e x 2 − e x 1 ) ( e x 2 + e x 1 ) + b ( e x 2 − e x 1 ) >= 2 a ( e x 2 − e x 1 ) e x 1 + x 2 2 + b ( e x 2 − e x 1 )
f(x0)g(x0)<=x2x1ex2x12ex1x221 ∴ f ′ ( x 0 ) − g ′ ( x 0 ) <= x 2 − x 1 e x 2 − x 1 2 − e x 1 − x 2 2 − 1
t=x2x12,(t>0), G(t)=2tetet1 t = x 2 − x 1 2 , ( t > 0 ) ,   G ( t ) = 2 t e t − e − t − 1
G(t)>0(1t)et>(1+t)et G ′ ( t ) > 0 ⇒ ( 1 − t ) e t > ( 1 + t ) e − t
H(t)=(1t)et(1+t)et H ( t ) = ( 1 − t ) e t − ( 1 + t ) e − t
H(t)=t(etet)<0,H(0)=0 H ′ ( t ) = − t ( e t − e − t ) < 0 , H ( 0 ) = 0
H(t)<=0,G(t)<=0 ∴ H ( t ) <= 0 , G ′ ( t ) <= 0
limx0G(t)=2et+et1=0 G(t)<0 lim x → 0 G ( t ) = 2 e t + e − t − 1 = 0   ∴ G ( t ) < 0
f(x0)<g(x0) ∴ f ′ ( x 0 ) < g ′ ( x 0 )

ex4.5. f(x)=exax+a f ( x ) = e x − a x + a f(x) f ( x ) 有两个不同的零点 x1 x 1 , x2 x 2 ,求证 f(2x1x2x1+x2)<0 f ′ ( 2 x 1 x 2 x 1 + x 2 ) < 0
a=ex2ex1x2x1 a = e x 2 − e x 1 x 2 − x 1
f(2x1x2x1+x2)>ex1+x22ex2ex1x2x1=ex1+x22(1ex2x12ex1x22x2x1) f ′ ( 2 x 1 x 2 x 1 + x 2 ) > e x 1 + x 2 2 − e x 2 − e x 1 x 2 − x 1 = e x 1 + x 2 2 ⋅ ( 1 − e x 2 − x 1 2 − e x 1 − x 2 2 x 2 − x 1 )
G(t)=etett G ( t ) = e t − e − t t G(t)>0 G ′ ( t ) > 0
limt0G(t)=2 lim t → 0 G ( t ) = 2
…………

不等式

放缩

常用不等式:
1) ex>=x+1 e x >= x + 1
2) 11x<=lnx<=x1 1 − 1 x <= ln ⁡ x <= x − 1

于是有送分题系列
1) nk=2lnkk<1n ∏ k = 2 n ln ⁡ k k < 1 n
2) nk=2ln(k2+1)<1+2lnn! ∑ k = 2 n ln ⁡ ( k 2 + 1 ) < 1 + 2 ln ⁡ n !
3) en(n1)2>=n! e n ( n − 1 ) 2 >= n !

ex1. 12n 1 2 n n n 项和为Tn,求证 T22+T33++Tnn<T2n<T12++Tn1n+12 T 2 2 + T 3 3 + ⋯ + T n n < T n 2 < T 1 2 + ⋯ + T n − 1 n + 1 2
T2nT2n1=Tn1n+14n2 T n 2 − T n − 1 2 = T n − 1 n + 1 4 n 2
T2n=nk=2Tk1k+nk=114k2 T n 2 = ∑ k = 2 n T k − 1 k + ∑ k = 1 n 1 4 k 2
nk=114k2<nk=11(2k1)(2k+1)<12 ∑ k = 1 n 1 4 k 2 < ∑ k = 1 n 1 ( 2 k − 1 ) ( 2 k + 1 ) < 1 2 //右
T2n=nk=2Tkknk=214k2+14<14 T n 2 = ∑ k = 2 n T k k − ∑ k = 2 n 1 4 k 2 + 1 4 < 1 4 //左

构造函数

ex1. 定义在 (0,+) ( 0 , + ∞ ) 上的函数 f(x) f ( x ) 的导函数 f(x) f ′ ( x ) 满足 xf(x)+f(x)=lnxx x f ′ ( x ) + f ( x ) = ln ⁡ x x ,且 f(e)=1e f ( e ) = 1 e ,则 f(x)+e>x+1e f ( x ) + e > x + 1 e 的解集为: (0,e) ( 0 , e )
f(x)=lnxxf(x)x2 f ′ ( x ) = ln ⁡ x − x f ( x ) x 2
[lnxxf(x)]=1xf(x)xf(x)=1lnxx>0x(0,e) [ ln ⁡ x − x f ( x ) ] ′ = 1 x − f ( x ) − x f ′ ( x ) = 1 − ln ⁡ x x > 0 ⇒ x ∈ ( 0 , e )
f(e)=0,f(x)<=0 f ′ ( e ) = 0 , f ( x ) <= 0 , f(x)x f ( x ) − x 单减,喵~

数值估计

看。脸。


tanx=ln|cosx|+C ∫ tan ⁡ x = − l n | cos ⁡ x | + C
|f(x1)f(x2)x1x2|<2017|f(x)|<=2017 | f ( x 1 ) − f ( x 2 ) x 1 − x 2 | < 2017 ⇒ | f ′ ( x ) | <= 2017

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值