钢管切割问题

钢管切割问题解决方案


本篇文章将介绍如何使用 C++ 解决钢管切割问题,利用二分查找算法来确定可以构建的最大高度。

1 题目介绍

小A是某工地的计算工程师。工地现有 n 根钢管,第 i 根钢管的长度为 ( a_i )。现在想用这 n 根钢管来做一个支撑用的柱子。可以切割这些钢管成为更短的钢管,但不能缝合两根钢管。为了安全起见,柱子必须用至少 k 根长度相同的钢管加上混凝土制成,并且要求钢管长度必须为整数。小A想知道,这个柱子最高能建成多高(钢管可以有剩余)。

1.1 输入格式

输入第一行一个整数 n, k (1 ≤ n, k ≤ 10000)。接下来一行输入 n 个空格隔开的整数 ( l_i ) (1 ≤ ( l_i ) ≤ ( 10^8 )),表示每根钢管的长度。

1.2 输出格式

输出最大的高度。

1.2.1 输入样例

样例 1:

2 4
8 4

输出:

2

样例 2:

8 8
12 3 14 12 14 20 4 8

输出:

7

2 解决思路

这个问题可以用 二分查找 来解决。题目要求是找到最大高度,使得至少有 k 根相同高度的钢管,且钢管高度必须为整数。钢管可以被切割,但不能缝合。

2.1 判断函数

设当前假设的钢管长度为 mid,我们可以计算出每根钢管可以切割成多少段长度为 mid 的钢管,然后将所有钢管切割后的段数加起来。如果总段数大于或等于 k,那么表示可以构建至少 k 根长度为 mid 的钢管;否则则不行。

2.2 二分查找

  • 钢管的最小长度是 1,最大长度为钢管中最长的一根。我们可以在这个范围内进行二分查找,找到最大的符合条件的长度。

2.3 时间复杂度

每次二分查找都会减少搜索空间一半,总共大约进行 log(max_length) 次二分搜索,每次搜索需要遍历所有钢管计算总段数,总体复杂度为 O(n * log(max_length)),对于 n ≤ 10000l_i ≤ 10^8 的输入数据量是可以接受的。

3 代码实现

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// 判断能否用长度为 mid 的钢管,切出至少 k 根钢管
bool canCut(const vector<int>& lengths, int k, int mid) {
    int count = 0;
    for (int len : lengths) {
        count += len / mid;
    }
    return count >= k;
}

int main() {
    int n, k;
    cin >> n >> k;
    
    vector<int> lengths(n);
    for (int i = 0; i < n; ++i) {
        cin >> lengths[i];
    }
    
    // 二分查找的范围是 1 到最长钢管的长度
    int left = 1, right = *max_element(lengths.begin(), lengths.end());
    int answer = 0;
    
    while (left <= right) {
        int mid = left + (right - left) / 2;
        
        if (canCut(lengths, k, mid)) {
            // 如果可以切割出 k 根长度为 mid 的钢管,尝试更大的长度
            answer = mid;
            left = mid + 1;
        } else {
            // 否则尝试更小的长度
            right = mid - 1;
        }
    }
    
    cout << answer << endl;
    
    return 0;
}

4 解释

  1. 输入

    • 读取输入 nk,然后读取每根钢管的长度。
  2. 二分查找

    • 通过二分查找确定最大的可以切割的钢管长度。
    • canCut() 函数用于判断当前的 mid 值是否能够满足至少 k 根钢管。
  3. 输出

    • 输出最大可以切割的钢管高度。

5 总结

本文详细介绍了钢管切割问题的解决方案,包括题目描述、输入输出格式、解决思路、代码实现及其解释。通过二分查找算法,能够有效地找到最大可切割的钢管高度。


参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Witheart__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值