钢管切割问题解决方案
本篇文章将介绍如何使用 C++ 解决钢管切割问题,利用二分查找算法来确定可以构建的最大高度。
1 题目介绍
小A是某工地的计算工程师。工地现有 n 根钢管,第 i 根钢管的长度为 ( a_i )。现在想用这 n 根钢管来做一个支撑用的柱子。可以切割这些钢管成为更短的钢管,但不能缝合两根钢管。为了安全起见,柱子必须用至少 k 根长度相同的钢管加上混凝土制成,并且要求钢管长度必须为整数。小A想知道,这个柱子最高能建成多高(钢管可以有剩余)。
1.1 输入格式
输入第一行一个整数 n, k (1 ≤ n, k ≤ 10000)。接下来一行输入 n 个空格隔开的整数 ( l_i ) (1 ≤ ( l_i ) ≤ ( 10^8 )),表示每根钢管的长度。
1.2 输出格式
输出最大的高度。
1.2.1 输入样例
样例 1:
2 4
8 4
输出:
2
样例 2:
8 8
12 3 14 12 14 20 4 8
输出:
7
2 解决思路
这个问题可以用 二分查找 来解决。题目要求是找到最大高度,使得至少有 k
根相同高度的钢管,且钢管高度必须为整数。钢管可以被切割,但不能缝合。
2.1 判断函数
设当前假设的钢管长度为 mid
,我们可以计算出每根钢管可以切割成多少段长度为 mid
的钢管,然后将所有钢管切割后的段数加起来。如果总段数大于或等于 k
,那么表示可以构建至少 k
根长度为 mid
的钢管;否则则不行。
2.2 二分查找
- 钢管的最小长度是 1,最大长度为钢管中最长的一根。我们可以在这个范围内进行二分查找,找到最大的符合条件的长度。
2.3 时间复杂度
每次二分查找都会减少搜索空间一半,总共大约进行 log(max_length)
次二分搜索,每次搜索需要遍历所有钢管计算总段数,总体复杂度为 O(n * log(max_length))
,对于 n ≤ 10000
,l_i ≤ 10^8
的输入数据量是可以接受的。
3 代码实现
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 判断能否用长度为 mid 的钢管,切出至少 k 根钢管
bool canCut(const vector<int>& lengths, int k, int mid) {
int count = 0;
for (int len : lengths) {
count += len / mid;
}
return count >= k;
}
int main() {
int n, k;
cin >> n >> k;
vector<int> lengths(n);
for (int i = 0; i < n; ++i) {
cin >> lengths[i];
}
// 二分查找的范围是 1 到最长钢管的长度
int left = 1, right = *max_element(lengths.begin(), lengths.end());
int answer = 0;
while (left <= right) {
int mid = left + (right - left) / 2;
if (canCut(lengths, k, mid)) {
// 如果可以切割出 k 根长度为 mid 的钢管,尝试更大的长度
answer = mid;
left = mid + 1;
} else {
// 否则尝试更小的长度
right = mid - 1;
}
}
cout << answer << endl;
return 0;
}
4 解释
-
输入:
- 读取输入
n
和k
,然后读取每根钢管的长度。
- 读取输入
-
二分查找:
- 通过二分查找确定最大的可以切割的钢管长度。
canCut()
函数用于判断当前的mid
值是否能够满足至少k
根钢管。
-
输出:
- 输出最大可以切割的钢管高度。
5 总结
本文详细介绍了钢管切割问题的解决方案,包括题目描述、输入输出格式、解决思路、代码实现及其解释。通过二分查找算法,能够有效地找到最大可切割的钢管高度。