在一代人的时间里,我们见证了互联网革命,云革命,可以说我们正处于数据革命的中间。数据一直至关重要,但如今其庞大的规模、速度和实用性正达到令人眼花缭乱的新高度。
现在,数据应用程序和分析已成为我们工作生活中永久的、必不可少的、不断增长的一部分,我们做得不够,这是一个问题。
低编码或无编码数据平台将成为数据驱动决策和日常业务运营的关键组成部分。
通过使用指标存储作为主要服务层,由NLP(自然语言处理)和AI算法启用的数据平台可以减少甚至消除业务用户对SQL的依赖。
虽然数据工程领域已经取得了巨大的进步,但我们仍然需要为普通用户提供更便捷的服务。专业人员能够很好地理解数据的细微差别,从而成功地从中提取见解,并且通常使用 SQL 实现此目标。
但这种模式不能扩展到大多数其他企业。您的最终用户(商店经理、销售代表、营销人员、店员)是否具备该级别的 SQL 技能?他们能否下载任何数据集、启动数据库、创建表连接并运行 SQL 查询来获取见解?
数据平台需要支持没有深厚SQL知识的普通业务用户。这是让每个人都了解情况的唯一途径。
LC/NC 对数据平台意味着什么?
分析数据通常存储在数据库中。最终用户必须弄清楚如何使用某种查询语言(如SQL)或通过Python脚本查询这些数据平台。
如何构建 LC/NC 数据平台
指标存储作为主数据服务层的企业不应该为来自数据平台的数据提供服务,而应该创建定义和策划业务指标的指标商店。最终用户只需将这些指标拖放到他们的工具中,例如Excel,BI仪表板,Web应用程序等。
在指标中,业务指标被定义、计算并存储在一个中心位置,并覆盖着适当的治理流程。然后,最终用户可以定义和派生对其日常任务至关重要的指标(例如,按产品划分的销售数字,同比增长,利润率)。这些是用户想知道的数据点。那么,为什么不定义它们一次,正确计算它们,并让整个公司的每个人都可以访问呢?
帮助用户提问的自然语言
与其要求用户学习SQL,为什么不让他们用简单的英语提问呢?随着NLP技术的出现,我们应该期望今天的数据平台能够理解日常用户的日常语言。
我们还应该期望该平台通过上下文感知将NLP功能向前推进一步。上下文感知对于交互式分析体验至关重要。"机器"可以与用户进行对话,在其中可以提出和回答后续问题。
随着人工智能内置于当今的数据平台中,分析数据和元数据、交叉引用用户行为以及优化用户回答问题的方式将变得更加快速和容易。今天的人工智能算法甚至可以预测用户可能会问什么问题,并准备好答案。当他们想要与数据交互时,AI可以显着改善用户体验。同时,数据平台中的AI还可以自动优化数据存储,消除浪费,降低成本。
当今最令人兴奋的技术融合在一起时,魔法就会发生。在数据世界中,从未精制的数据到洞察力和智能是一项艰巨的任务。但就像数据本身一样,创造智能、优势和洞察力必须从一定的距离来看待。从这个距离来看,我们现在可以看到,通过利用指标存储、NLP和AI来实现低代码/无代码平台,可以解决这个问题。