滤波(opencv自写函数)

本文介绍了滤波的基本概念,包括线性滤波和均值滤波,并详细阐述了均值滤波的原理及实现方法。通过OpenCV自编函数,实现了图像的滤波操作,对边缘像素点的处理进行了说明。实验结果展示了中值滤波和均值滤波(3*3及5*5模板)对图像的影响。
摘要由CSDN通过智能技术生成

滤波就是把图像中的干扰给去除掉,常用的滤波方法有线性滤波,均值滤波,拉普拉斯锐化等方法。并且每一种方法都有不同的滤波模板。

一、均值滤波:用模板扫描图像中的像素点,把扫描的点求平均值,用这个平均值代替扫描中点。

void MedianFiltering(IplImage* img, IplImage* &dst){

    img = cvLoadImage("images/椒盐噪声.tif", CV_LOAD_IMAGE_GRAYSCALE);//必须是灰度图才可以正常显示!!!
    dst = cvCreateImage(cvSize(img->widthStep, img->height), IPL_DEPTH_8U, 1);
    dst = cvCloneImage(img);

    //显示均衡化之前的图片
    cvNamedWindow("原来的图像", 1);
    cvShowImage("原来的图像", img);

    int dir[][2] =
    { 1, 0,
    -1, 0,
    0, 1,
    0, -1,
    1, 1,
    -1, -1,
    1, -1,
    -1, 1 };
    double arr[10] = {0};
    int p = 0;
    int i, j, k;
    int h, w;

    for (i = 1; i < img->height - 1; i++){
        for (j = 1; j < img->width - 1; j++){
            p = 0;
            unsigned char grayvalue = img->image
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值