大家好,我是chris,从事算法7年了,现在在阿里,涉及到的领域涵盖CV、NLP、架构等,业务线也扩展到广告、运营、客服、风控等各个方面。
最近两年算法岗被炒得很火,我的朋友圈也经常刷到python的小广告。说实话我很乐意看到我当年硕士时攻读的冷门模式识别(AI的一个领域)专业如今变为大热,甚至有点窃喜。但在我面试了1个月算法岗的年轻人后,我觉得很多初学者似乎有些跑偏了:
他们有的半路出家数学明显基础薄弱,有的空有理论实际写了不到1000行代码,有的干脆不知道算法工程师工作流,技能偏差很大……
基于此种看似繁华的乱象,我想给机器学习初学者们以下几个建议:
《人工智能劝退指南》
1.数学是必须的,也是基础。从我入行7年的经验上讲,凡是和你说人工智能可以绕过数学的一定是不负责任的,至少也是不成熟的。数学基础到哪里?文末我分享了一个免费基础数学课,可以当做一个自测题,如果你看不懂,请思考一下你的人工智能天花板的高度吧~
2.算法理论工业界用的上的就那么几个。机器学习分为70%的有监督学习、20%的无监督学习、10%的半监督和强化学习,如果你是初学者,请把经典模型比如线性回归、逻辑回归、树型模型、SVM、K均值等吃透,其它的先掌握基本理论就好,至于强化学习,请先放弃吧。
3.数据清洗比你想的还重要。机器学习没那么高大上,特别是对于刚入行的菜鸟算法工程师,做调参、调包是你的主要工作,其实即使你是高级算法工程师了,数据清洗仍然占据你的绝大部分时间。
4.参加一下Kaggle竞赛吧。特别对于没有实践经验的应届生和转行的程序员朋友,多参加一下吧,没有名次也没关系,至少简历上能多写几个项目。
5.对于工程实践,你可能还称不上入门。请跑代码,玩转代码,看看它们“吃进什么吐出什么”。如果有可能,完整参与/体验一下工业项目,吃透它,你会发现你的路还很远。
现在有很多引导新手的机器学习课程/教科书,他们不考虑工业界实际需求,从0开始和学生一起造轮子,或者罗列了大量的算法理论,这种学习路径不仅仅难度大,而且90%的学习者没有在一个方向上深入,不具备核心能力,也不符合企业的人才观,也白白耽误了初学者的最佳入门时间。
为了能让更多初学者学会“学习机器学习”,找到入门的切入点,我邀请了三位人工智能不同领域的专家,一位985数学博士张老师,一位BAT的数据挖掘工程师@熊猫酱,一位计算机视觉方向的专家@Tant,以自身具体的工作流出发,举办了《零基础人工智能特训营》。从数学、数据分析、机器学习、深度学习四大方向集中培养你的核心能力。
戳此可以直接免费观看:https://www.cniao5.com/course/10266