给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:6767输出样例1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174输入样例2:
2222输出样例2:
2222 - 2222 = 0000
-------------------------------------------------------------------------------------------
#include<string>
#include<iostream>
#include<iomanip>
using namespace std;
FILE *stream;
int pow(int a) {
int s=1;
for (int i=0;i<a; a--)
s *= 10;
return s;
}
int inc(int a,int f) {
int i, tmp, k,o;
int c[4] = { a / 1000,a % 1000 / 100,a % 100 / 10,a % 10 };
for (i = 1; i < 4; i++) {
tmp = c[i];
for (k = i; k > 0; k--) {
o = f * (tmp - c[k - 1]);
if (o>0) break;
c[k] = c[k - 1];
}
c[k] = tmp;
}
return c[0] * 1000 + c[1] * 100 + c[2] * 10 + c[3];
}
int main() {
//freopen_s(&stream, "input.txt", "r", stdin);
int tmp;
int a, b,c;
cin >> c;
do {
if (c%1111==0) {
cout << c << " - " <<c << " = " << "0000" << endl;
return 0;
}
a = inc(c, -1);
b = inc(c, 1);
c = a - b;
cout<< a << " - " <<setfill('0')<< setw(4) << b << " = " << setfill('0') << setw(4) << c<<endl;
} while (c != 6174);
return 0;
}
提醒大家注意几个点:1、N=6174的情况;2、N=AAAA型的情况;3、注意别超时,我第一次用的字符数组,多次跟int型转换造成了超时。