关于NASAS的论文笔记

此篇博客来自这篇论文One-Shot Neural Architecture Search Through A Posteriori Distribution Guided Sampling

一.介绍NAS

NAS全称是Neural Architecture Search, 就是神经网络架构搜索。这一思想主要是从迁移学习的方向引伸出来。我主要介绍它的优化问题,在NAS中,解决就是两个问题,一个是权重优化,一个是网络结构的优化。
最原始的NAS优化问题如下
w a ∗ = a r g m i n w a L t ( M ( a , w a ) ) w_a^{*} = argmin_{w_a}L_t(M(a, w_a)) wa=argminwaLt(M(a,wa))
a ∗ = a r g m i n a ∈ G L v ( M ( a , w a ∗ ) ) a^* = argmin_{a\in G}L_v(M(a, w_a^{*})) a=argminaGLv(M(a,wa))
其中G代表的是一些网络预先定义网络结构,比如3x3卷积核等,t代表训练集,v代表验证集, M ( a , w a ) M(a,w_a) M(a,wa)代表网络结构和权重的网络。
结构如下:(图片居中不了抱歉)
NASAS
由于这种结构优化起来很慢,计算复杂度高,因而有了很多改进,近几年就出现one-shot model 可以有效提高优化速度,但存在权重和网络结构的无匹配问题。现在讲讲关于基于后验分布的one-shot model可以有效提高效率并且不需要Fine-tune,利用权重共享就能达到较高性能和准确率,由于以往的NAS很少能适应大型数据集,而这种方法能较好适应。

二. 关于基于后验分布的NAS的思想

NAS的问题是如何从训练集中得到网络并且具有泛化性能,泛化性能我们是通过验证集来进行做的。基于后验分布的NAS思想就是这样,我们就是要从一个训练集中去得到网络结构和权重参数,那我们可以用贝叶斯的方法求解。
p ( φ ∣ X , Y ) = p ( Y ∣ X , φ ) p ( φ ) ∫ φ p ( Y ∣ X , φ ) p(\varphi|X, Y) = \frac{p(Y|X, \varphi)p(\varphi)}{\int_{\varphi}p(Y|X, \varphi)} p(φX,Y)=φp(YX,φ)p(YX,φ)p(φ)
这里的 φ = { φ l , k s } ( \varphi=\{\varphi_{l,k}^s\}( φ={ φl,ks}(这里的 s s

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值