具体算法,算法导论中已经有非常清楚的介绍了,实现时使用最小堆是我在Haffman编码[2]中实现过的,直接拿来使用。
使用最小堆的一个方法中需要调整从起始点到某个节点的路径长度,开始考虑的一个策略是使用一个外部数组表示节点到Heap中index的映射,当Heap节点交换时,也要更新数组,保持映射的一致性。
后来看了写其他人的实现,还有另一种方法,就是不更新节点的weight,而是将新的节点weight直接push到最小堆中,因为新push的weight比较小,一定会先pop出来。
还有一个问题就是,在push是否要检查是否该节点已经访问过了,仔细想想这个检查是没有必要的,因为假设路径权重都是正值,那么如果pop出来的是以前访问过的节点,那么就存在一个回路了,也就是说不可能存在这种情况,这是Dijkstra算法保证的,采用这种方法无法判断Heap是否为空,但我们知道当所有节点都pop出来后,应该就可以结束了。
还有一点需要注意的时,更新vertex的weight之前和当前节点的weight进行比较,如果小于当前节点的weight才进行更新。
具体的代码实现如下:
#include <stdio.h>
#include <vector>
#include <string>
template<typename T, typename Compare = std::less<T> >
class MinHeap {
public:
MinHeap() : size_(0) {}
MinHeap(Compare compare) : compare_(compare), size_(0) {}
T Pop() {
T value;
if (size_ > 0) {
value = data_[0];
Swap(data_[0], data_[size_ - 1]);
size_--;
if (size_ > 0) {
Heapfy(0);
}
data_.pop_back();
}
return value;
}
void Push(const T& value) {
data_.push_back(value);
size_++;
size_t index = size_ - 1;
size_t parent;
while(index > 0) {
parent = Parent(index);
if (compare_(data_[index], data_[parent])) {
Swap(data_[index], data_[parent]);
index = parent;
} else {
break;
}
}
}
size_t Size() {
return size_;
}
private:
void Swap(T& left, T& right) {
T tmp = left;
left = right;
right = tmp;
}
size_t Parent(size_t child) {
if (child != 0) {
return (child - 1) / 2;
} else {
return 0;
}
}
size_t LeftChild(size_t parent) {
return (parent + 1) * 2 - 1;
}
size_t RightChild(size_t parent) {
return (parent + 1) * 2;
}
void Heapfy(size_t index) {
size_t min = index;
size_t left = LeftChild(index);
size_t right = RightChild(index);
if ((left < size_) && compare_(data_[left],data_[index])) {
min = left;
}
if ((right < size_) && compare_(data_[right],data_[min])) {
min = right;
}
if (min != index) {
Swap(data_[index], data_[min]);
Heapfy(min);
}
}
Compare compare_;
size_t size_;
std::vector<T> data_;
};
class Vertex {
public:
void Set(char name, int weight, int index) {
name_ = name;
weight_ = weight;
index_ = index;
}
bool operator<(const Vertex& right) const {
return weight_ < right.weight_;
}
char name_;
int weight_;
int index_;
};
int main(int argc, char** argv) {
const int kVertexSize = 5;
int ** adj = new int*[kVertexSize];
for (int i = 0; i < kVertexSize; ++i) {
adj[i] = new int[kVertexSize];
for (int j = 0; j < kVertexSize; ++j) {
adj[i][j] = -1;
}
}
adj[0][1] = 10;
adj[0][3] = 5;
adj[1][2] = 1;
adj[1][3] = 2;
adj[2][4] = 4;
adj[3][1] = 3;
adj[3][2] = 9;
adj[3][4] = 2;
adj[4][0] = 7;
adj[4][2] = 6;
Vertex vertex[kVertexSize];
const int kMaxInt = 0x7FFFFFFF;
vertex[0].Set('s', 0, 0);
vertex[1].Set('t', kMaxInt, 1);
vertex[2].Set('x', kMaxInt, 2);
vertex[3].Set('y', kMaxInt, 3);
vertex[4].Set('z', kMaxInt, 4);
MinHeap<Vertex> path_length_queue;
for (int i = 0; i < kVertexSize; ++i) {
path_length_queue.Push(vertex[i]);
}
for (int i = 0; i < kVertexSize; ++i) {
Vertex current = path_length_queue.Pop();
printf("%c ", current.name_);
for (int j = 0; j < kVertexSize; ++j) {
if (adj[current.index_][j] > 0 &&
vertex[j].weight_ > vertex[current.index_].weight_ + adj[current.index_][j]) {
vertex[j].weight_ = vertex[current.index_].weight_ + adj[current.index_][j];
path_length_queue.Push(vertex[j]);
}
}
}
printf("\n");
}
参考文献
[1]算法导论 第24章 P366
[2]http://blog.csdn.net/bertzhang/article/details/7222004
[3]http://www.codeproject.com/Articles/24816/A-Fast-Priority-Queue-Implementation-of-the-Dijkst