AI 浪潮铺天盖地,嵌入式领域也被卷入其中。这一变化带来了前所未有的挑战,但同时也藏着许多机会。
对于嵌入式开发者来说,如何在这波浪潮里,从被冲击到与 AI 融合,找到自己的发展方向,是当下最需要解决的问题。
01
AI给嵌入式带来的改变:从挑战到新机遇
传统嵌入式开发遇到的难题:
算力和资源不匹配:AI 技术不断进步,像 CNN、RNN 这些 AI 模型,对计算资源的要求越来越高。但嵌入式设备因为使用场景的关系,一般都得做到低功耗、小内存 。
比如说,一个普通的 CNN 模型运行起来,可能需要好几 GB 的内存和很厉害的计算核心支持,可大多数嵌入式设备的内存也就几十 MB 甚至更少,计算能力也不强。这么大的差距,让传统嵌入式开发在运行 AI 模型时困难重重。
开发思路大转变:以前的嵌入式开发,主要是按照确定的规则来编程,用 if - else 这样的条件语句实现各种功能。
但 AI 开发不一样,它靠数据驱动,得收集、整理、标注大量数据,然后训练和优化模型。这种开发思路的改变,要求开发者不能只盯着程序逻辑设计,还要更加关注数据质量和模型性能。
工具跟不上:以前嵌入式开发者用惯的工具,在面对 AI 开发时就不好使了。他们得去适应新的 AI 框架,像 TensorFlow Lite、PyTorch Mobile,还有边缘计算工具。
02
AI 给嵌入式带来的新机会
边缘智能兴起:AI 技术往边缘端发展,在本地设备上进行 AI 推理变得越来越重要。就像人脸识别门禁系统、语音唤醒设备,在本地就能完成 AI 推理,不用老是依赖云端,反应更快&#