caffe常见问题及注意事项

1.GPU显存不足无法运行模型:

Cannot create Cublas handle. Cublas won't be available. 
E1219 17:43:06.398439  3214 common.cpp:121] Cannot create Curand generator. Curand won't be available. 
F1219 17:43:06.401962  3214 benchmark.cpp:112] Check failed: error == cudaSuccess (2 vs. 0) out of memory

解决:首先使用nvidia-smi命令来检查显卡的运行状态,当电脑中有多个GPU时,caffe是默认使用GPU0的,尤其是在服务器上,大家都默认使用GPU0时,会极大可能的导致GPU0显存过满。若确定问题是这个,则可以运行如下指令进行GPU的切换:

bash ./build/tools/caffe train --solver=examples/testXXX/solver.prototxt --gpu 1

 若想指定同时使用几个GPU:

bash ./build/tools/caffe train --solver=examples/testXXX/solver.prototxt --gpu 0,1,2,3

若想使用所有的GPU,则可以运行如下指令:

bash ./build/tools/caffe train --solver=examples/testXXX/solver.prototxt --gpu all

该问题在make runtest -j6时依然存在,此时需要先在caffe目录下输入以下指令:

export CUDA_VISIBLE_DEVICES=0

其中那个0是你要指定的显卡编号,不然runtest会在中间失败,并报与此之前相同的错误。 

2.anaconda3与pycaffe的python2.7相冲突的问题:

caffe与python2.7匹配的很好,但如果你安装了anaconda3的话他默认是会把python3添加到环境变量中去的,这样会造成以下几个问题:

(1).在caffe目录下,你输入pythpn,然后import caffe会造成失败

(2).在用户目录下,你输入python,然后import caffe会成功,但如果你在之后去使用caffe的函数的话,你就会发现会报错,找不到相应的函数,这应该就是python3与caffe相不匹配的地方了吧。

那如何解决这种问题呢,就是要采用系统安装的python2.7。

(1).在命令行输入

export PYTHONPATH=~/caffe/python

然后在caffe目录下输入python2.7,之后你再import caffe就会发现一切正常了。

(2).cd caffe/python,在该目录下之间输入python2.7,然后也可以正常import caffe。

3.pip2与pip3

在同时安装了anaconda3与python2.7的情况下,pip2是对应python2.7的,pip3则是对应python3的

对于服务器的非root用户来讲,使用pip2来安装库是要注意一个细节,,举例如下:

pip2 install pandas --user

 


 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值