论文地址:https://arxiv.org/abs/2006.10211v1
UV-Net: Learning from Curve-Networks and Solids(UV-Net:从曲线网络和实体学习)
代码地址:https://github.com/AutodeskAILab/UV-Net
代码地址:https://github.com/AutodeskAILab/UV-Net/tree/self-supervised
2020 CVPR
摘要
我们介绍了UV-Net,一种新的神经网络架构和表示,旨在直接操作3D CAD模型的边界表示(B-rep)数据。B-rep格式广泛应用于设计、仿真和制造行业,以实现复杂和精确的CAD建模操作。然而,当与现代机器学习一起使用时,由于数据结构的复杂性以及它对连续非欧几里德几何实体和离散拓扑实体的支持,B-rep数据提出了一些独特的挑战。在本文中,**我们提出了B-rep数据的统一表示,利用曲线和曲面的U和V参数域来建模几何,并提出了邻接图来显式地建模拓扑。这导致了一种独特而高效的网络架构UV-Net,它以计算和内存高效的方式将图像和图形卷积神经网络结合在一起。**为了帮助未来的研究,我们提出了一个合成的标记B-rep数据集,SolidLetters,源自人类设计的具有几何和拓扑变化的字体。最后,我们证明UV-Net可以推广到五个数据集上的监督和无监督任务,同时优于其他3D形状表示,如点云、体素和网格。
总结:提出了B-rep数据的统一表示,利用曲线和曲面的U和V参数域来建模几何,并提出了邻接图来显式地建模拓扑。