UV-Net: Learning from Boundary Representations【阅读笔记】

UV-Net: Learning from Boundary Representations(UV-Net:从边界表示中学习)
论文地址:chrome-extension://bocbaocobfecmglnmeaeppambideimao/pdf/viewer.html?file=https%3A%2F%2Fopenaccess.thecvf.com%2Fcontent%2FCVPR2021%2Fpapers%2FJayaraman_UV-Net_Learning_From_Boundary_Representations_CVPR_2021_paper.pdf
代码地址:https://github.com/AutodeskAILab/UV-Net
代码地址:https://github.com/AutodeskAILab/UV-Net/tree/self-supervised
2021 CVPR

目录

摘要

我们介绍了UV-Net,一种新的神经网络架构和表示,旨在直接操作3D CAD模型的边界表示(B-rep)数据。B-rep格式广泛应用于设计、仿真和制造行业,以实现复杂和精确的CAD建模操作。然而,当与现代机器学习一起使用时,由于数据结构的复杂性以及它对连续非欧几里德几何实体和离散拓扑实体的支持,B-rep数据提出了一些独特的挑战。在本文中,我们提出了B-rep数据的统一表示,利用曲线和曲面的U和V参数域来建模几何,并提出了邻接图来显式地建模拓扑。这导致了一种独特而高效的网络架构UV-Net,它以计算和内存高效的方式将图像和图形卷积神经网络结合在一起。为了帮助未来的研究,我们提出了一个合成的标记B-rep数据集,SolidLetters,源自人类设计的具有几何和拓扑变化的字体。最后,我们证明UV-Net可以推广到五个数据集上的监督和无监督任务,同时优于其他3D形状表示,如点云、体素和网格

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值