PnPNet Pull-and-Push Networks for Volumetric Segmentation with Boundary Confusion【即插即用】

本文提出PnPNet,一种通过拉推分支处理医学图像中边界混淆的卷积神经网络。模型利用SDM和CCM增强边界表示,实现在多个数据集上的优异表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PnPNet: Pull-and-Push Networks for Volumetric Segmentation with Boundary Confusion

PnPNet: Pull-and-Push Networks for Volumetric Segmentation with Boundary Confusion(PnPNet:用于边界混乱的体积分割的拉推网络)

代码地址:https://github.com/AlexYouXin/PnPNet.

2023年提交arxiv

摘要

体积图像的精确边界分割是图像引导诊断和计算机辅助干预的关键任务,特别是在临床实践中边界混淆。然而,由于缺乏边界形状约束,u形深度网络无法有效解决这一挑战。此外,现有的边界细化方法过分强调细长结构,由于神经网络对微小物体的建模能力有限,导致神经网络出现过拟合现象。在本文中,我们重新定义了边界生成的机制,包括与邻近区域相互作用的动力学。

此外,我们提出了一个统一的网络,称为PnPNet,以模拟混淆边界区域的形状特征。PnPNet的核心成分包括推分支和拉分支。具体来说,基于扩散理论,我们设计了语义差分引导模块(SDM),从推枝挤压边界区域。SDM内显式和隐式差分信息将显著提高类间边界的表示能力。

此外,在K-means算法的激励下,引入来自拉支的类聚类模块(CCM)对相交边界区域进行拉伸。因此,推枝和拉枝会分别收缩和增大边界不确定性。他们提供了两种对立的力量来增强模型对边界区域的表示能力,然后促进模型输出更精确的类间边界描述。我们在三

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值