FFA-Net: Feature Fusion Attention Network for Single Image Dehazing(FFA-Net:用于单幅图像去雾的特征融合关注网络)
AAAI2020
论文地址:https://arxiv.org/abs/1911.07559
代码地址:https://github.com/zhilin007/FFA-Net
摘要
本文提出了一种端到端特征融合关注网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键部分组成:1)考虑到不同的通道特征包含完全不同的加权信息以及不同图像像素上的雾霾分布不均匀,一种新颖的特征注意(FA)模块将通道注意与像素注意机制结合起来。FA对不同的特征和像素的处理是不平等的,这为处理不同类型的信息提供了额外的灵活性,扩展了cnn的表示能力。2)一个基本的块结构由局部残差学习和特征注意组成,局部残差学习允许通过多个局部残差连接绕过薄雾区或低频等不太重要的信息,让主网络架构专注于更有效的信息。3)基于注意力的不同层次特征融合(FFA)结构,从特征注意力(FA)模块中自适应学习特征权重,赋予重要特征更多权重。
这种结构还可以保留浅层的信息并将其传递到深层。
实验结果表明,我们提出的FFANet在定量和定性上都大大超过了以前最先进的单幅图像去雾方法,将SOTS室内测试数据集上公布的最佳PSNR指标从30.23 dB提高到36.39 dB。
贡献
贡献如下:
- 我们提出了一种新颖的端到端特征融合关注网络FFA-Net,用于单幅图像去雾。FFA-Net大大超越了以前最先进的图像去雾方法,FFA-Net在厚雾和纹理细节丰富的区域表现尤为突出。我们在图像细节还原和色彩保真度方面也有强大的优势。<