FFA-Net: Feature Fusion Attention Network for Single Image Dehazing【即插即用】

FFA-Net: Feature Fusion Attention Network for Single Image Dehazing(FFA-Net:用于单幅图像去雾的特征融合关注网络)
AAAI2020
论文地址:https://arxiv.org/abs/1911.07559
代码地址:https://github.com/zhilin007/FFA-Net

摘要

本文提出了一种端到端特征融合关注网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键部分组成:1)考虑到不同的通道特征包含完全不同的加权信息以及不同图像像素上的雾霾分布不均匀,一种新颖的特征注意(FA)模块将通道注意与像素注意机制结合起来。FA对不同的特征和像素的处理是不平等的,这为处理不同类型的信息提供了额外的灵活性,扩展了cnn的表示能力。2)一个基本的块结构由局部残差学习和特征注意组成,局部残差学习允许通过多个局部残差连接绕过薄雾区或低频等不太重要的信息,让主网络架构专注于更有效的信息。3)基于注意力的不同层次特征融合(FFA)结构,从特征注意力(FA)模块中自适应学习特征权重,赋予重要特征更多权重。

这种结构还可以保留浅层的信息并将其传递到深层。

实验结果表明,我们提出的FFANet在定量和定性上都大大超过了以前最先进的单幅图像去雾方法,将SOTS室内测试数据集上公布的最佳PSNR指标从30.23 dB提高到36.39 dB。

贡献

贡献如下:

  • 我们提出了一种新颖的端到端特征融合关注网络FFA-Net,用于单幅图像去雾。FFA-Net大大超越了以前最先进的图像去雾方法,FFA-Net在厚雾和纹理细节丰富的区域表现尤为突出。我们在图像细节还原和色彩保真度方面也有强大的优势。
  • 我们提出了一种新的特征注意(FA)模块,它结合了通道注意和像素注意机制。这个模块在处理不同类型的信息时提供了额外的灵活性,更多地关注厚雾霾像素和更重要的通道信息。
  • 我们提出了一个由局部残差学习和特征注意(FA)组成的基本块,局部残差学习允许薄雾区信息和低频信息通过多个跳过连接被绕过,特征注意(FA)进一步提高了FFA-Net的容量。
  • 我们提出了一种基于注意力的特征融合(FFA)结构,该结构可以保留浅层的信息并将其传递到深层。此外,它不仅可以融合所有特征,还可以自适应学习不同级别特征信息的不同权重。最后,该方法取得了比其他特征融合方法更好的性能。

网络框架

在这里插入图片描述

结论

本文提出了一种端到端特征融合注意网络,并展示了其在单幅图像去雾中的强大功能。虽然我们的FFA-Net结构简单,但它比以前的最先进的方法有很大的改进余地。我们的网络在图像细节恢复和色彩保真度方面具有强大的优势,有望解决其他低层次的视觉任务,如去噪、超分辨率、去噪等。FFA和FFA- net中的其他有效模块在图像恢复算法中起着重要的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值