Spark编程: 编写独立应用程序实现数据去重 2020.10.16

本文详细介绍了如何使用Apache Spark进行数据处理,从创建目录结构、配置Spark环境到运行dhlTest Scala脚本,一步步指导读者完成一个简单的DHL数据清洗和分析任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


独立运行文件: dhlTest.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object dhlTest {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("BeyondNothing_dhl")
    val sc = new SparkContext(conf)

    //获取数据
    val DHLtwo = sc.textFile("file:///usr/local/spark/dhlTest")
    DHLtwo.filter(_.trim().length>0) //trim()函数返回空格个数
        .map(line=>(line.trim,""))
          .groupByKey()
              .sortByKey() //按key value的自然顺序排序
                  .keys.collect().foreach(println)
  }
}

在这里插入图片描述

实现步骤

1.建立目录结构

mkdir ./dhlTest  # 创建应用程序根目录
mkdir -p ./dhlTest/src/main/scala   #创建所需的文件夹结构

2.添加配置信息

在sparkapp目录下创建文件 simple.sbt 并且添加如下内容:

name := "dhl_BeyondNothing"
version := "1.0"
scalaVersion := "2.11.12"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0"

3.导入代码文件(dhlTest.scala)

将代码文件放在scala目录下:
在这里插入图片描述

4.在/usr/local/spark/dhlTest 路径下创建文件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.打包并运行

在这里插入图片描述

编译打包
/usr/local/sbt/sbt package
运行
/usr/local/spark/bin/spark-submit --class "dhlTest" ~/dhlTest/target/scala-2.11/simple-project_2.11-1.0.jar 2>&1 | grep "2017"

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_大木_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值