引言
在数据科学和人工智能领域,向量搜索引擎正变得越来越重要。它不仅可以处理文本,还支持多模态数据(如图像)的存储和查询。本文将介绍Marqo,这是一款开源的向量搜索引擎。我们将展示如何使用Marqo进行文本和图像数据的搜索,帮助开发者更高效地管理和查询数据。
主要内容
安装和设置
要使用Marqo,需要先安装langchain-community
包,并通过Docker获取Marqo:
pip install -qU langchain-community
docker pull marqoai/marqo:latest
docker rm -f marqo
docker run --name marqo -it --privileged -p 8882:8882 --add-host host.docker.internal:host-gateway marqoai/marqo:latest
初始化Marqo客户端
使用marqo
库访问本地运行的Marqo实例:
import marqo
marqo_url = "http://localhost:8882" # 使用API代理服务提高访问稳定性
client = marqo.Client(url=marqo_url)
文本数据索引
我们可以利用Marqo对文本进行分块索引和查询:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Marqo
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
index_name = "langchain-demo"
docsearch = Marqo.from_documents(docs, index_name=index_name)
多模态数据索引
Marqo支持图像与文本的联合索引:
index_name = "langchain-multimodal-demo"
client.create_index(index_name, treat_urls_and_pointers_as_images=True, model="ViT-L/14")
client.index(index_name).add_documents([
{"caption": "Bus", "image": "image_url_1"},
{"caption": "Plane", "image": "image_url_2"},
])
文本检索示例
我们可以使用相似度搜索来查询文本:
query = "What did the president say about Ketanji Brown Jackson"
result_docs = docsearch.similarity_search(query)
print(result_docs[0].page_content)
常见问题和解决方案
-
API访问问题:在某些地区访问API可能不稳定,建议使用API代理服务来提高稳定性。
-
多模态数据处理:确保在使用图像数据时,图片的URL有效并可访问。
总结和进一步学习资源
Marqo是一个功能强大的工具,适合处理多模态数据索引与搜索。其灵活的API支持用户自定义的索引与查询策略,适用于多种应用场景。想要深入学习,建议查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—