[探索Marqo向量搜索引擎:轻松进行多模态数据搜索!]

引言

在数据科学和人工智能领域,向量搜索引擎正变得越来越重要。它不仅可以处理文本,还支持多模态数据(如图像)的存储和查询。本文将介绍Marqo,这是一款开源的向量搜索引擎。我们将展示如何使用Marqo进行文本和图像数据的搜索,帮助开发者更高效地管理和查询数据。

主要内容

安装和设置

要使用Marqo,需要先安装langchain-community包,并通过Docker获取Marqo:

pip install -qU langchain-community
docker pull marqoai/marqo:latest
docker rm -f marqo
docker run --name marqo -it --privileged -p 8882:8882 --add-host host.docker.internal:host-gateway marqoai/marqo:latest

初始化Marqo客户端

使用marqo库访问本地运行的Marqo实例:

import marqo

marqo_url = "http://localhost:8882"  # 使用API代理服务提高访问稳定性
client = marqo.Client(url=marqo_url)

文本数据索引

我们可以利用Marqo对文本进行分块索引和查询:

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Marqo
from langchain_text_splitters import CharacterTextSplitter

loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

index_name = "langchain-demo"
docsearch = Marqo.from_documents(docs, index_name=index_name)

多模态数据索引

Marqo支持图像与文本的联合索引:

index_name = "langchain-multimodal-demo"

client.create_index(index_name, treat_urls_and_pointers_as_images=True, model="ViT-L/14")
client.index(index_name).add_documents([
    {"caption": "Bus", "image": "image_url_1"},
    {"caption": "Plane", "image": "image_url_2"},
])

文本检索示例

我们可以使用相似度搜索来查询文本:

query = "What did the president say about Ketanji Brown Jackson"
result_docs = docsearch.similarity_search(query)
print(result_docs[0].page_content)

常见问题和解决方案

  1. API访问问题:在某些地区访问API可能不稳定,建议使用API代理服务来提高稳定性。

  2. 多模态数据处理:确保在使用图像数据时,图片的URL有效并可访问。

总结和进一步学习资源

Marqo是一个功能强大的工具,适合处理多模态数据索引与搜索。其灵活的API支持用户自定义的索引与查询策略,适用于多种应用场景。想要深入学习,建议查看以下资源:

参考资料

  1. Marqo GitHub
  2. LangChain GitHub

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值