问:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
例如下面的二维数组就是每行、每列都递增排序。如果在这个数组中查找数字7,则返回true;如果查找数字5,由于数字不含有该数字,则返回false。
1 2 8 9
2 4 9 12
4 7 10 13
6 8 11 15
首先我们选取数组右上角的数字9.由于9大于7,并且9还是第4列的第一个(也是最小的)数字,因此7不可能出现在数字9所在的列。于是我们把这一列从需要考虑的区域内剔除,之后只需分析剩下的3列(如图2.2(a)所示)。在剩下的矩阵中,位于右上角的数字是8.同样8大于7,因此8所在的列我们也可以剔除。接下来我们只需分析剩下的两列即可(如图2.2(b)所示)。
在由剩余的两列组成的数组中,数字2位于数组的右上角。2小于7,那么要查找的7可能在2的右边,也有可能在2的下边。在前面的步骤中,我们已经发现2右边的列都已经被剔除了,也就是说7不可能出现在2的右边,因此7只有可能出现在2的下边。于是我们把数字2所在的行也剔除,只分析剩下的三行两列数字(如图2.2(c)所示)。在剩下的数字中数字4位于右上角,和前面一样,我们把数字4所在的行也删除,最后剩下两行两列数字(如图2.2(d)所示)。
在剩下的两行两列4个数字中,位于右上角的刚好就是我们要查找的数字7,于是查找过程就可以结束了。
总结上述查找的过程,我们发现如下规律:首先选取数组右上角的数字。如果该数字等于要查找的数字,查找过程结束;如果该数字大于要查找的数字,剔除这个数字所在的列;如果该数字小于要查找的数字,剔除这个数字所在的行。也就是说如果要查找的数字不在数组的右上角,则每一次都在数组的查找范围中剔除一行或者一列,这样每一步都可以缩小查找的范围,知道找到要查找的数字,或者查找范围为空。
下面是上述思路对应的参考代码:
bool Find(int*matrix,int rows,int columns,int number)
{
bool found=false;
if(matrix!=NULL && rows>0 && columns>0)
{
int row=0;
int column=columns-1;
while(row<rows && column>=0)
{
if(matrix[row*columns+column] == number)
{
found=true;
break;
}
else if(matrix[row*columns+column]>number)
-- column;
else
++row;
}
}
return found;
}
在前面的分析中,我们每一次都是选取数组查找范围内的右上角数字。同样,我们也可以选取左下角的数字。感兴趣的读者不妨自己分析一下每次都选取左下角的查找过程。但我们不能选择左上角或者右下角。以左上角为例,最初数字1位于初始数组的左上角,由于1小于7,那么7应该位于1的右边或者下边。此时我们既不能从查找范围内剔除1所在的行,也不能剔除1所在的列,这样我们就无法缩小查找的范围。