POJ2385 Apple Catching 题解

博客园同步

原题链接

首先声明: POJ \text{POJ} POJ 数据出错,搞成了“一开始在 1 1 1 2 2 2 棵树都可以”,导致错误。事实上本题解可以通过。

听说还有一维 dp \text{dp} dp 的啊,相当厉害,可我只会三维的。

考虑令 f i , j , 1 / 2 f_{i,j,1/2} fi,j,1/2 表示第 i i i 分钟,经过 j j j 次移动后站在第 1 / 2 1 / 2 1/2 棵树位置时摘到的最大苹果数。分类讨论:

2 / 1 → 1 / 2 2/1 \rightarrow 1/2 2/11/2,此时答案为 f i − 1 , j − 1 , 2 / 1 f_{i-1,j-1,2/1} fi1,j1,2/1.

保持不动,则此时答案为 f i − 1 , j , 1 / 2 f_{i-1,j,1/2} fi1,j,1/2.

要注意什么时候可以拿到当前的苹果:因为有些状态是不存在的(就你偶数次移动一定是在 1 1 1,奇数次在 2 2 2),因此注意移动次数和苹果位置的综合判断。

还有一点,不是移动次数越多,拿到的苹果就越多。如果 a i = 1 ( ∀ i ∈ [ 1 , T ] ) a_i = 1(\forall i \in [1,T]) ai=1(i[1,T]),那么一次不动才是最好的,并不是动很多次。

时间复杂度: O ( T W ) \mathcal{O}(TW) O(TW).

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;

const int N=1e3+1;

inline int read(){char ch=getchar(); int f=1; while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0; while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;}

inline void write(int x) {
	if(x<0) {putchar('-');write(-x);return;}
	if(x<10) {putchar(char(x%10+'0'));return;}
	write(x/10);putchar(char(x%10+'0'));
}

int T,W,a[N];
int f[N][31][2];

int main() {
	T=read(),W=read();
	for(int i=1;i<=T;i++) a[i]=read();
	int ans=0; 
	for(int j=0;j<=W;j++)
	for(int i=1;i<=T;i++)
	for(int j=0;j<=W;j++) {
		f[i][j][1]=max(f[i-1][j-1][2],f[i-1][j][1])+(a[i]==1 && j%2==0);
		f[i][j][2]=max(f[i-1][j-1][1],f[i-1][j][2])+(a[i]==2 && j%2==1);
		ans=max(ans,max(f[i][j][1],f[i][j][2]));
//		printf("%d %d %d %d\n",i,j,f[i][j][1],f[i][j][2]);
	} printf("%d\n",ans);
	return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值