1.直方图概述
直方图是变量分布的统计图,他可以让我们能够了解数据的密度估计和概率分布。
2.原理理解
首先创建三个矩阵来处理每个输入图像通道。并用split来对通道分离,如下所示:
vector<Mat> bgr;
split(image, bgr);
然后定义直方图的区间数:
int numbins = 256;
定义变量范围,并创建3个矩阵来存储每个直方图
float range[] = { 0, 256 };
const float* histRange = { range };
Mat b_hist, g_hist, r_hist;
使用calcHist函数计算直方图:
calcHist(&bgr[0], 1, 0, Mat(), b_hist, 1, &numbins, &histRange);
calcHist(&bgr[1], 1, 0, Mat(), g_hist, 1, &numbins, &histRange);
calcHist(&bgr[2], 1, 0, Mat(), r_hist, 1, &numbins, &histRange);
在计算每个通道直方图之后,还要绘制它并显示给用户。因此创建一个512*300像素的彩色图像:
int width = 512;
int height = 300;
Mat histImage(height, width, CV_8UC3, Scalar(20, 20, 20));
在直方图绘制到图像之前,我们会在最小值0和最大值之间标准化直方图矩阵,最大值与输出直方图图像的高度相同:
//将图像直方图的高度标准化为与输出直方图的高度一样
normalize(b_hist, b_hist, 0, height, NORM_MINMAX);
normalize(g_hist, g_hist, 0, height, NORM_MINMAX);
normalize(r_hist, r_hist, 0, height, NORM_MINMAX);
现在,我们从区间0-1绘制一条线,以此类推。之后,计算有多少像素在每个区间之间,然后通过将宽度除以区间数来计算binStep变量。从水平位置i-1到i绘制每条小线,垂直位置是相应的i中的直方图值,并使用彩色通道绘制:
int binStep = cvRound((float)width / (float)numbins);
for (int i = 1; i < numbins; i++)
{
line(histImage, Point(binStep * (i - 1), height - cvRound(b_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0));
line(histImage, Point(binStep * (i - 1), height - cvRound(g_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0));
line(histImage, Point(binStep * (i - 1), height - cvRound(r_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255));
}
3.完整代码
myApi.h文件
#pragma once
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
class myFun
{
public:
Mat drawHist(Mat &image);
};
myApi.cpp文件
#include"myApi.h"
Mat myFun::drawHist(Mat& image)
{
vector<Mat> bgr;
split(image, bgr);
//imshow("b", bgr[0]);
int numbins = 256;
float range[] = { 0, 256 };
const float* histRange = { range };
Mat b_hist, g_hist, r_hist;
calcHist(&bgr[0], 1, 0, Mat(), b_hist, 1, &numbins, &histRange);
calcHist(&bgr[1], 1, 0, Mat(), g_hist, 1, &numbins, &histRange);
calcHist(&bgr[2], 1, 0, Mat(), r_hist, 1, &numbins, &histRange);
int width = 512;
int height = 300;
Mat histImage(height, width, CV_8UC3, Scalar(20, 20, 20));
//将图像直方图的高度标准化为与输出直方图的高度一样
normalize(b_hist, b_hist, 0, height, NORM_MINMAX);
normalize(g_hist, g_hist, 0, height, NORM_MINMAX);
normalize(r_hist, r_hist, 0, height, NORM_MINMAX);
int binStep = cvRound((float)width / (float)numbins);
for (int i = 1; i < numbins; i++)
{
line(histImage, Point(binStep * (i - 1), height - cvRound(b_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0));
line(histImage, Point(binStep * (i - 1), height - cvRound(g_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0));
line(histImage, Point(binStep * (i - 1), height - cvRound(r_hist.at<float>(i - 1))),
Point(binStep * (i), height - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255));
}
//imshow("histImage", histImage);
return histImage;
}
主函数main.cpp文件
#include<opencv2/opencv.hpp>
#include<iostream>
#include"myApi.h"
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat src = imread("F:/testImage/test.png");
if (!src.data)
{
cout << "图片没有找到" << endl;
return -1;
}
imshow("src", src);
myFun mf;
Mat hist = mf.drawHist(src);
imshow("histImage", hist);
waitKey(0);
return 0;
}
4.实验结果