模型结构
代码
import tensorflow as tf
import os
import datetime
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
cifar=tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test)=cifar.load_data()
x_train,x_test=x_train/255.0,x_test/255.0
from tensorflow.keras import layers
%load_ext tensorboard
class AlexNet(Model):
def __init__(self):
super(AlexNet,self).__init__()
self.input_layer=layers.Conv2D(filters=96,kernel_size=(11,11),strides=1,padding="same",activation='relu')
self.middle_layers=[
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(3,3),strides=2),
layers.Conv2D(filters=256,kernel_size=(5,5),strides=1,padding="same",activation='relu'),
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(3,3),strides=2),
layers.Conv2D(filters=384,kernel_size=(3,3),strides=1,padding="same",activation='relu'),
layers.Conv2D(filters=384,kernel_size=(3,3),strides=1,padding="same",activation='relu'),
layers.Conv2D(filters=256,kernel_size=(3,3),strides=1,padding="same",activation='relu'),
layers.MaxPool2D(pool_size=(3,3),strides=2),
slayers.Flatten(),
layers.Dense(2048,activation='relu'),
layers.Dropout(0.5),
layers.Dense(2048,activation='relu'),
layers.Dropout(0.5) ]
self.output_layer=layers.Dense(10,activation='softmax')
def call(self,x):
x=self.input_layer(x)
for layer in self.middle_layers:
x=layer(x)
y=self.output_layer(x)
return y
model=AlexNet()
model.compile(optimizer="adam",loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1,callbacks=[tensorboard_callback])