[文章摘要]Semantic Annotation of Mobility Data using Social Media

文章:Semantic Annotation of Mobility Data using Social Media
作者:F Wu, Z Li, WC Lee, H Wang, Z Huang.
来源:ACM WWW 2015.


本文利用LBSN数据来标注轨迹数据,来发现用户旅行的目的,关键问题是得到和用户移动相关的词汇,为此定义了相关函数来描述,利用频率方法、高斯混合模型方法和KDE方法对相关词汇的密度进行建模,实验证明KDE最有效。


工作特点:
以前的方法是ststic方法,丢失了动态的时间信息,比如纽约的麦迪逊花园广场,可能举办各种比赛和演唱会,不同的时间有不同的活动。


LBSN数据的挑战之一是其中的文本是noisy的,含有大量不相关的信息;挑战之二是邻近区域的词频可能被少数的landmark所占据。


词频方法的不足:不能找到与位置相关的词。
高斯混合模型的不足:GMM的component数目在不同的词上面会不同;词真正的分布不一定是GMM,如受路网、经典等的影响。


KDE包含了词的局部性和相关性。


未来工作:
考虑时间的作用:

landmark和event有区别,landmark密度一直很高,但event的密度在一定时间范围内很高。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值