【读书笔记->统计学】07-02 离散型概率分布-二项分布概念简介

二项分布

假设一个情境:你参加了一个问答节目,一共3道题,每道题有4个选项。但是你一点都不知道答案,那么求能答对题数的概率分布。

下面是3个问题的概率树:

在这里插入图片描述

如果X表示答对的题数,我们看看具体的概率:

在这里插入图片描述

答对0题和答对3题显然易见,只需要 0.7 5 3 0.75^3 0.753 0.2 5 3 0.25^3 0.253。那么答对1题呢,答对的题目可以是题目1、题目2或题目3三种可能,因此答案是 0.7 5 2 ∗ 0.25 + 0.7 5 2 ∗ 0.25 + 0.7 5 2 ∗ 0.25 = 3 ∗ 0.7 5 2 ∗ 0.25 0.75^2*0.25+0.75^2*0.25+0.75^2*0.25= 3 * 0.75^2*0.25 0.7520.25+0.7520.25+0.7520.25=30.7520.25。答对2题同理。

我们可以看到规律:
P ( X = r ) = 3 C r ∗ 0.2 5 r ∗ 0.7 5 3 − r P(X=r) = ^3C_r * 0.25^r * 0.75^{3-r} P(X=r)=3Cr0.25r0.753r
组合 n C r ^nC_r nCr即从n个对象中选取r个对象的选取方式数目(不需要知道确切的选取顺序)。现在我们需要的是从3个问题中选取r个选对的问题。


另一个情境:假设有5道题了呢?

我们可以思考n个问题的解法。很好理解,这个公式的意思是,在答对r题的情况下,n道题中选取r个题目用来答对,答对的概率是0.25,有r次,答错的概率是0.75,有n-r次。
P ( X = r ) = n C r ∗ 0.2 5 r ∗ 0.7 5 n − r P(X=r) = ^nC_r * 0.25^r * 0.75^{n-r} P(X=r)=nCr0.25r0.75nr
如果再次归纳,就可以得到。

设想每道题的答对概率是p,答错的概率是q=1-p。答对n个问题中的r个问题的概率为:
P ( X = r ) = n C r ∗ p r ∗ q n − r P(X=r) = ^nC_r * p^r * q^{n-r} P(X=r)=nCrprqnr
这类问题称为二项分布

二项分布的条件

  1. 你正在进行一系列独立试验。
  2. 每一次试验都存在失败和成功的可能,每一次试验的成功概率相同。
  3. 试验次数有限。

第1条和第2条的条件和几何分布的条件相同。差别在于二项分布感兴趣的事获得成功的次数。

让我们用X表示“n次试验中的成功次数”,为了求出取得r次成功的概率,可用下列算式:
P ( X = r ) = n C r ∗ p r ∗ q n − r , 其 中 n C r = n ! r ! ( n − r ) ! P(X=r)=^nC_r*p^r*q^{n-r}, 其中^nC_r = \frac{n!}{r!(n-r)!} P(X=r)=nCrprqnr,nCr=r!(nr)!n!
p是每一次试验的成功概率,n是试验次数。写作:
X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)
根据n与p的不同数值,二项分布的形状会发生变化,p越接近0.5,图形越对称。一般情况下,当p小于0.5时,图形向右偏斜;当p大于0.5时,图形向左偏斜。

在这里插入图片描述

二项分布的期望和方差

前面我们使用二项分布计算基本概率,由此我们可以算出答对一定数目的问题的概率。但是,如果答案是随机选择的,那么我们到底能期望自己答对几个问题呢?算出期望可以帮助你做出更正确的选择,以便决定是否参加下一轮问题的回答。

让我们看看能否求出期望和方差的常规表达式。我们先算单次试验的期望和方差,然后看看是否能推广至n次独立的试验。

先看单次试验

假定我们只试验一次。每一次试验或是成功,或是失败,因此,在单次试验时,有可能取得0次或1次成功,如果X~B(1, p),则成功1次的概率为p,成功0次的概率为q。

X的概率分布:

x01
P(X=x)qp

求出期望和方差:
E ( X ) = 0 q + 1 p = p V a r ( X ) = E ( X 2 ) − E 2 ( X ) = ( 0 q + 1 p ) − p 2 = p − p 2 = p q E(X) = 0q + 1p = p \\ \\ Var(X) = E(X^2) - E^2(X) \\ = (0q+1p) - p^2 \\ = p - p^2 \\ = pq E(X)=0q+1p=pVar(X)=E(X2)E2(X)=(0q+1p)p2=pp2=pq

再看n次试验

因为每个 X i X_i Xi是一次单独的试验(可以理解为1次“答题”), E ( X i ) = p , V a r ( X i ) = p q E(X_i) = p, Var(X_i)=pq E(Xi)=p,Var(Xi)=pq。则:
E ( X ) = E ( X 1 ) + E ( X 2 ) + . . . + E ( X n ) = n E ( X i ) = n p V a r ( X ) = V a r ( X 1 ) + V a r ( X 2 ) + . . . + V a r ( X n ) = n V a r ( X i ) = n p q E(X) = E(X_1) + E(X_2) + ... + E(X_n) \\ = n E(X_i) \\ = np \\ \\ Var(X) = Var(X_1) + Var(X_2) + ... + Var(X_n) \\ = n Var(X_i) \\ = npq E(X)=E(X1)+E(X2)+...+E(Xn)=nE(Xi)=npVar(X)=Var(X1)+Var(X2)+...+Var(Xn)=nVar(Xi)=npq
由于试验是独立的,因此, E ( X 1 ) = E ( X 2 ) = E ( X 3 ) E(X_1) = E(X_2) = E(X_3) E(X1)=E(X2)=E(X3),以此类推。Var(X)同理。


我们先分析了单次试验的情况,求出了期望和方差。再分析了n个独立试验的情况,并利用简便方法求出了n次试验的期望和方差。我们发现,只要X~B(n,p),则:
E ( X ) = n p V a r ( X ) = n p q E(X) = np \\ Var(X) = npq E(X)=npVar(X)=npq
上面的公式对所有二项分布都成立。

问:几何分布和二项分布看着很相似。它们有区别吗?分别应该在什么时候用呢?

答:几何分布和二项分布确实有共同之处,二者处理的都是独立试验,每次试验都或是成功,或是失败。差别在于实际上要求的结果。在哪种情况下使用哪种概率分布取决于要求的结果。

如果试验次数固定,求成功一定次数的概率,则需要使用二项分布;使用二项分布还可以求出在n次试验中能够期望取得的成功次数。

如果你感兴趣的是在取得第一次成功之前需要试验多少次,则需要使用几何分布。

问:几何分布是有众数的,二项分布有众数吗?

答:有的。一个概率分布的众数就是具有最高概率的数值,如果p为0.5且n为偶数,则众数为np;如果p为0.5且n为奇数,则该概率分布有两个众数,即位于np左右两侧的两个数值。对于其他n值和p值,则需要通过反复试算的方法求众数,但一般都非常接近np。

问:几何分布和二项分布都要进行大量试验,每一次试验的成功概率都必须一样吗?

答:为了能应用几何分布和二项分布,每一次试验的成功概率都必须相同。如果不满足这个条件,则无论是几何分布还是二项分布都不适用。

我试算出了E(X),但所得结果不是概率分布中的数值。我哪里做错了吗?

答:计算E(X)的时候,结果有可能不是概率分布中的可能数值,即,结果有可能不是一个会实际出现的数值。得出这样的结果并不表示你算错了。

二项分布总结

在这里插入图片描述

例题:

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值