PLS中的权值和载荷

很多人学习PLS之前是从PCR入手的,我个人认为这是PLS不错的打开方式,PCR和PLS主要区别是两者在权值W的选择上有本质的区别。

PCR的权值选择是基于X本身的特征向量,而PLS则根据X‘Y的特征向量来选择。PLS早在80年代就已经提出来,当时计算特征向量并不像今天这么容易,随便调用一个SVD就行。当时求特征向量是通过幂法得到,所以,在PCR和PLS中都能找到NIPALS算法,这个迭代算法主要是用于计算特征向量。事实上,今天我们调用的SVD算法仍然是基于这种办法,只不过做了很多改进,我们也无需去关注算法的原理与细节,只要得到我们想要的结果即可。

我们都知道,PCR让人很舒服的地方在于权值和载荷是一样的,我们先看一些SVD分解

                                                                          \\A = U\Sigma V^T \\W = V \\T = AW = U\Sigma \\P = W \\TP^T =AWW^T=A

W是酋矩阵,对于PCR来说,W是X的各个特征向量,同时它各个成分是相互正交,这就保证了每一个得分与后面残差保持了正交的关系。

对于任意t_i,t_j都满足以下条件

                                                               t_i^Tt_j = (Aw_i)^T (Aw_j)=w_i^TA^TAw_j

由于V是A^TA的特征向量

                                                             A^TA = (U\Sigma V^T)^TU\Sigma V^T=V\Sigma ^2V^T

由于W=V,则有

                                                            A^TAw_i= \lambda_iw_i

                                                           t_i^Tt_j = w_i^TA^TAw_j = \lambda_jw_i^Tw_j=\left\{\begin{matrix} 1,i=j\\ 0,i\neq j \end{matrix}\right.

w_i满足相互正交,且关于A^TA共轭正交,这也保证了每一个得分与其之后的残差矩阵保持正交的关系。

然而对于PLS而言,就没那么幸运了。举例而言,PLS1为例,w\propto X^Ty,可以看出,这个权值其实正比于X和y的协方差,它基本上不是X^TX的特征向量。说到这里,理由还并不充分。

因为对于PLS而言 ,

                                                             t_i= E_{i-1}w_i

姑且查看t_1,t_2的关系

                                                              t_1^Tt_2 = t_1^TX_1w_2=t_1^T(X_0-t_1w_1^T)w_2=w_1^TX_0^TX_0w_2

从求权值的过程来看,w_1,w_2显然都不是X_0^TX_0的特征向量,所以其正交的可能性不大,并非说一定不可能,由上式可以得到

                                                            t_1^Tt_2 =(t_1^TX_0-t_1^Tt_1w_1^T)w_2

欲令上式等于0,只要满足t_1^TX_0-t_1^Tt_1w_1^T=0,由此得到w_1^T = t_1^TX_0/(t_1^Tt_1),是不是很眼熟,这不正是载荷p的转置吗。好了,上面说了这么多,就是为了说明为什么载荷不能直接用权值代替的原因,说得不是特别透彻,大致应该可以理解了。

那么p之间是否存在正交的关系呢,答案是否定的。对于不同的p向量,则有如下关系                                                          

                                                          p_i^Tp_j =(E_{i-1}^Tt_i)/(t_i^Tt_i))^TE_{j-1}^Tj_i)/(t_j^Tt_j)

我们只需要观察t_i^TE_{0}E_{0}^Tt_j是否为0,从形式来看,t显然不是E_{0}E_{0}^T的特征向量,所以难以保证上式为0,但并非说一定不为0

由于t一直在E0的列空间内,所以t在E0空间上的投影还是自身,因此有

                                            t_i^TE_{0}(E_{0}E_{0}^T)^-E_{0}^Tt_j=t_i^Tt_j=0

由此可以推得

                                                      p_i^T(E_{0}E_{0}^T)^-p_j=0

p关于(E_{0}E_{0}^T)^-空间是正交的,也称为共轭正交

到了这里,我们对于p和w之间已经有了不少的认识,下面总结一下p和w之间的关系

                                                p_i^Tw_i^ = t_i^TE_{i-1}w_i/(t_i^Tt_i)=t_i^Tt_i/(t_i^Tt_i)=1

当i相同时,p在w上投影值为单位长度1,注意到w_i^Tw_i^ =1,这二者存在什么关系呢

将p分解为w的投影部分和正交部分p = p_w+p_o

计算p的投影部分 p _w= p^Tw/(w^Tw)*w = w,由此可见,p包含了两部分内容,正交部分刚好弥补了w的不足

在展开w和p的关系前,先讨论了一下E和w之间的关系

                                                  \\E_i = E_{i-1} -t_ip_i^T \\E_iw_i = E_{i-1}w_i -t_ip_i^Tw_i = t_i-t_i = 0

对于任意j>i

                            \\E_j = E_{j-1} -t_{j}p_{j}^T=(I-t_jt_j^T/(t_j^Tt_j))E_{j-1} =\prod_{d=i}^{j}(I-t_dt_d^T/(t_d^Tt_d))E{i-1}

                                         (I-t_dt_d^T/(t_d^Tt_d))E_{d-1}*w_d = t_d - t_d = 0

由上述可以得到

                                                           \\E_jw_i= 0,j>=i

有了这些信息,后面可以就p和w之间接着展开讨论

                                               p_j^Tw_i = t_j^TE_{j-1}w_i/(t_i^Tt_i)

当j>i时,则有

                                                     p_j^Tw_i = 0

也就是说权值w与后续的载荷p是其正交的。w和p的关系就说到这里了,以后有想到再补充。

后记: 经过一段时间对PLS的继续学习,理解更加深入后,对w和p重新做了一段整理,详情见该文章

https://blog.csdn.net/billy145533/article/details/103482611

参考

主元分析与偏最小二乘法

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值