OpenCV文字识别(三) :文字定位与切割(python)

本文介绍了使用OpenCV在Python中进行文字定位与切割的方法,通过倾斜校正预处理后,采用投影法切割行和列,将文本文档拆分为单独的字体图片进行后续识别。虽然算法相对简单,但可能需要调整参数以适应不同情况,尤其是面对复杂场景如标点符号和单字间距问题。
摘要由CSDN通过智能技术生成

倾斜校正的预处理完成后便可以开始对处理后的文本文档进行定位与切割了。

总体思路:先切割行,再切割列,得到一张张字体图片并标号储存方便后续的识别。

其中切割的方法采用了投影法,即在二值化后判断每一行的黑白色素。

Python测试代码:

import YuChuLi
import cv2
import numpy as np
V_PROJECT = 1
H_PROJECT = 2
count = 0


def get_text_project(img_text, mode):       # 二值化之后通道为1,故img.shape[2]不存在了(相当于降维了)
    pos = []
    if mode == V_PROJECT:
        pos = np.zeros([img_text.shape[1]], dtype=np.int)
        for i in range(img_text.shape[0]):
            for j in range(img_text.shape[1]):
                if img_text[i, j] == 255:
                    pos[j] += 1

    if mode == H_PROJECT:
        pos = np.zeros([img_text.shape[0]], dtype=np.int)
        for i in range(img_text.shape[1]):
            for j in range(img_text.shape[0]):
                if 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值