在 RAG(Retrieval-Augmented Generation) 任务中,向量数据库用于高效存储和检索文本向量。FAISS、Pinecone 和 Weaviate 是当前主流的向量数据库,它们各有优缺点,适用于不同的应用场景。本文将详细比较它们的特性,并分析在 RAG 任务中的适用性。
1. FAISS(Facebook AI Similarity Search)
FAISS 是由 Facebook AI 研发的开源向量搜索库,专注于高效的近似最近邻(ANN)搜索。
✅ 优点
- 高性能 & 低延迟:采用 HNSW、IVFFlat、PQ 等索引优化算法,在大规模数据集上表现优异。
- 本地部署 & 私有化:适合对数据隐私要求较高的企业应用。
- 丰富索引策略:支持 L2 距离、余弦相似度、Hamming 距离等。