1.题目再现
这个E题是一个光污染的问题,算是一个分析评价类的问题,因为这个题目叙述非常简洁,并且没有涉及到任何的数据,需要我们对于这个进行分析,赛题如下:
背景
光污染被用来描述任何过度或不良地使用人造光。我们所说的一些光污染现象包括光侵入、过度照明和光杂波。在大城市,这些现象最容易被观测到的是太阳落山后天空中的一道辉光; 然而,它们也可能出现在更偏远的地区。
光污染会改变我们对夜空的看法,对环境产生影响,并影响我们的健康和安全。例如,植物的成熟可能会延迟或加速,野生动物的迁徙模式也会受到影响。过多的人造光可能会混淆我们的昼夜节律,导致睡眠质量差,可能还会导致身心健康问题。人造光引起的眩光可能会导致一些机动车事故。
社区官员或当地团体可能会实施干预策略,以减轻光污染的负面影响。然而,人造光既有正面影响,也有负面影响,会以不同的方式影响不同的地点。例如,为了避免上面列出的光污染的负面影响,一些社区选择低光社区,这反过来可能会导致犯罪率上升。光污染的影响可能取决于该地区的发展水平、人口、生物多样性、地理和气候等因素。因此,评估任何干预策略的影响程度和潜在影响都必须针对特定的地点进行调整。
要求
COMAP的照明控制任务(ICM)正在努力提高人们对光污染影响的认识,并制定干预策略以减轻这些影响。为了支持这一ICM工作,您的任务是解决测量和减轻光污染的影响各个地点,包括人类和非人类的问题。具体来说,你应该:
制定一个广泛适用的度量标准,以确定一个地点的光污染风险水平。
应用您的度量标准,并在以下四个不同类型的地点上解释其结果:
受保护的土地位置,
一个农村社区,
一个郊区社区,
一个城市社区。
描述解决光污染的三种可能的干预策略。讨论实施每一项策略的具体行动,以及这些行动对光污染总体影响的潜在影响。
选择你的两个地点,并使用你的指标来确定你的干预策略对每个地方最有效。讨论所选的干预策略如何影响该地点的风险水平。
最后,对于你确定的一个地点及其最有效的干预策略,制作一页纸的传单来推广该地点的策略。
2.论文基本结构和核心分析
-
1.文章里面使用到了TOPSIS和熵权法进行指标的权重的确定,使用灰色神经网络进行预测数据
-
2.误差分析和灵敏度分析是数学建模论文里面的很重要的部分,这个文章里面在误差分析和灵敏度检验上面做得很好(如何控制变量,如何改变指标等等),非常值得我们学习;
-
3.在题目没有给任何条件的情况下,如何建模:本文使用的是选择定义六个指标,给出不同影响因素对应的分数(不同的指标都是1~9分),权重和分数相结合,计算综合指标衡量该地区的光污染的程度;
-
4.如何选择区域,在题目给定的范围的情况下,我们不能一概而论,需要从中选择代表性的区域,进行模型的应用和求解;
-
5.干预指标的预测:我们题目要求我们建模之后进行相关的干预,在这个里面就采取了三个不同的措施,我们需要使用这个灰色神经网络,预测干预之后结果,并且使用这个解说说明哪一个干预的效果是做好的;
3.亮点之灵敏度分析
Error Analysis and Sensitivity Analysis这个翻译好像是错误的分析和敏感性的分析,但是实际上使用我们的数学建模里面的专业术语就是误差的检验和灵敏度分析,这个才对味;
因为这个文章里面去评价这个光污染程度的时候,划分了不同指标对应的权重和不同权重下面的具体得分,因此我们进行灵敏度分析的时候,就是去分别取增加这个对应的扰动量,也就是我们熟知的这个干扰的因素:
这个文章里面做的就非常好:
先去改变这个权重,查看这个因素对于我们的最后得分的影响,看看这个是不是稳定的,
然后去改变这个具体的评分,查看那对于我们的最终结果的影响,
最后就是两个因素同时改变,查看那对于我们的最终结果的印象,这个就是灵敏度分析的方法