自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 详解Banksy多样本空间聚类分析

Banksy空间转录组分析实战经验分享:针对多样本分析中的坐标重叠问题,需将样本沿x轴错开排列;核心函数initialize_banksy用于构建空间邻域图并计算权重,generate_banksy_matrix根据λ参数生成多尺度空间特征矩阵;注意HVG数量会因max_m参数倍增;最终只需将降维和聚类结果整合到原始数据中。通过调整λ值(0-1)可控制细胞自身与邻域特征的权重,实现从细胞类型到组织域的不同聚类目标。

2025-06-12 22:16:18 468

原创 空间转录组数据下游分析(二)

邻近富集分析是空间转录组研究的重要方法,通过置换检验评估细胞类型间的空间关联性,以富集z分数量化邻近关系的显著性。该方法在疾病研究中具有关键应用价值:1)揭示肿瘤微环境等疾病机制中的细胞相互作用;2)解析细胞微环境组织结构,如利用邻近标记技术研究蛋白质组。分析结果可通过热图或网络图呈现,其中节点代表细胞类型,边反映空间邻近关系的显著性,有助于直观展示特定细胞类型的空间交互特征。

2025-06-08 21:34:45 357

原创 空间转录组数据下游分析(一)

空间转录组(Xenium, VisiumHD, Cosmx)数据分析中,我们在细胞类型注释完成后,接下来通常会再识别出不同的CN,每个CN中会包含特有的几种细胞类型,CN中的细胞类型由于其细胞类型组成的相似性,代表了共有的细胞结构,在空间转录组数据分析的过程中,比较不同条件下样本之间的空间结构,就会找到疾病所带来的组织结构变化,可以在更加全面的角度上认识疾病,并为治疗提供积极的意见。6. 各CN中,或者CN之间的细胞通讯分析,找到在不同样本/分组的关键受配体对。3. 各CN中细胞类型占比统计展示。

2025-06-08 09:50:18 987

原创 Cancer Cell丨肺癌早期干预新突破,TIM-3靶点或成关键

摘要:美国MD安德森癌症中心在《Cancer Cell》发表研究,通过整合空间蛋白组、转录组和单细胞组学数据,系统分析了114例人肺腺癌不同阶段样本及589份小鼠模型样本。研究发现,在癌前阶段的髓系免疫细胞中TIM-3免疫检查点高度表达,提示其可能成为肺癌早期干预的新靶点。研究采用免疫组化质谱成像、单细胞RNA测序等技术,揭示了从正常组织到癌变过程中免疫微环境的动态变化,并通过小鼠模型验证了抗TIM-3治疗的有效性。该研究为肺腺癌的早期诊断和拦截治疗提供了重要线索。(150字)

2025-05-29 21:18:13 684

原创 R语言绘图 | 渐变火山图

客户要求绘制类似文章中的这种颜色渐变火山图,感觉挺好看的。网上找了一圈,发现有别人已经实现的类似代码,拿来修改后即可使用,这里做下记录,以便后期查找。

2025-05-13 19:52:49 407

原创 多样本整合Banksy空间聚类分析(Visium HD, Xenium, CosMx)

之前我们介绍了Banksy的python版本代码使用(针对单个样本)。我们知道BANKSY是一种空间组学数据的聚类方法,通过将每个细胞的特征(基因表达)与其空间近邻特征的平均值以及邻域特征梯度相结合来进行聚类,这样就结合了细胞分子邻域特征,增强了空间结构识别。这里我们介绍下针对有多个样本情况下,从一个包含多个样本细胞的Anndata对象开始,先对多样本空间坐标进行错位处理(Staggering,解决多个样本合并时坐标重叠问题),然后怎样构建空间最近邻图,再降维和harmony去批次,最后整合起来进行聚类。

2025-05-12 22:10:49 550

原创 Cell Res | Stereo-seq揭示人类肝癌浸润区促进肝细胞-肿瘤细胞串扰、局部免疫抑制和肿瘤进展

根据肿瘤边界的位置,边缘区域进一步分为肿瘤部分(M-T)和肿瘤旁部分(M-P)。肝癌中四个区域(T、M、P和LN)的细胞组成和空间分布具有高度异质性,除主要的肿瘤细胞和肝细胞外,T/NK细胞、B细胞和成纤维细胞是最丰富的细胞。有同学给了一篇23年的空间文章,研究的一个核心概念是肿瘤边缘的"侵袭区",文章中定义的是以肿瘤边缘为中心的500微米宽的区域,这里是肿瘤细胞侵袭和转移的活跃前沿,包含复杂的细胞成分及独特的分子特征,存在免疫抑制微环境、肿瘤细胞代谢重编程及受损肝细胞,对肿瘤进展和患者预后有关键影响。

2025-04-29 20:25:04 843

原创 Scanpy可视化技巧--UMAP图优化

核心美化功能解析原理:通过核密度估计寻找细胞聚集区优势:比 convex hull 更贴合真实分布自动计算亚群中位数坐标白色半透明背景增强对比度圆角边框提升美观度​​​​​​​自动计算箭头长度比例自适应图像长宽比标签防遮挡设计。

2025-04-23 21:08:02 327

原创 Visium HD多样本拼片拆分

Visium HD实验的时候一个捕获区域内可以包含多个样本拼片(例如多个组织切片或不同样本的排列)是常见的实验设计,多样本拼片能够提升实验效率,单张玻片处理多个样本,降低试剂和测序成本,后续分析的时候只需要使用Loupe Browser手动圈选和分割样本,就能得到每个样本的数据。

2025-04-23 21:04:07 375

原创 Nature Immunology | 老年癌症患者为何更难治愈?最新研究揭示关键机制!

癌症中的年龄相关免疫功能障碍的病因和影响尚不完全清楚。本文表明,老化肿瘤微环境(TME)中有限的 CD8+ T 细胞激活,超出了细胞本身缺陷对肿瘤控制的限制。在老化过程中,肿瘤生长增加与 CD8+ T 细胞浸润和功能的减少有关。年轻小鼠的 T 细胞转移到老年小鼠中,由于 T 细胞功能障碍的迅速诱导,无法恢复肿瘤控制。老化 TME 中的细胞外信号驱动了一种肿瘤浸润的年龄相关功能障碍(TTAD)细胞状态,其在功能、转录和表观遗传学上与经典的 T 细胞耗竭不同。

2025-04-20 21:20:36 508

原创 经典的文章要反复读--单细胞测序和CODEX绘制人骨髓的组成和空间结构

骨髓是一个复杂的器官,包含了来自造血、间充质、内皮、血管平滑肌和神经谱系的多种细胞。相对稀有的非造血细胞被认为在造血过程中起着关键作用。包括内皮细胞(ECs)、间充质基质细胞(MSCs)和成骨细胞在内的多种非造血细胞类型被认为是骨髓微环境的重要组成部分。近年来,单细胞 RNA 测序(scRNA-seq)的技术进步揭示了小鼠中这些非造血骨髓成分的多个亚群的存在。尽管对人类造血细胞的研究已相当广泛,但关于定义构成人类骨髓微环境的非造血细胞的类似研究仍相对匮乏。定义骨髓微环境中单细胞的组成一直受到分离足够数量的可

2025-04-14 22:03:39 1013

原创 腾讯IMA上线!数据分析+文献阅读神器,效率翻倍

上传PDF→AI自动提取。

2025-03-31 21:16:09 1023

原创 Xenium | 细胞邻域(Cellular Neighborhood)分析(fixed radius)

其中,N为总细胞数,K为某细胞类型的总数量,n为邻域内细胞数,k为邻域内该细胞类型的数量。通过Benjamini-Hochberg方法校正多重假设检验的p值。上节我们介绍了空间转录组数据分析中常见的细胞邻域分析,CN计算过程中定义是否为细胞邻居的方法有两种,一种是上节我们使用固定K最近邻方法(根据富集的细胞类型和已知生物学知识(如动脉、内骨膜的位置),为每个聚类赋予生物学意义的名称(如“早期髓系-动脉邻域”)。:将所有窗口的细胞类型组成进行聚类,识别出具有相似细胞类型组成的空间区域,即邻域。

2025-03-30 21:30:07 391

原创 Xenium | 细胞邻域(Cellular Neighborhood)分析(fixed k-nearest neighbor)

Cell Neighborhood(细胞邻域)指骨髓微环境中空间上邻近的细胞群体形成的功能单元,这些单元由特定细胞类型组成,反映细胞间的物理邻近性和潜在相互作用。邻域的划分基于细胞类型的共定位模式,例如:动脉-内骨膜邻域(Arterio-endosteal neighborhood):富含早期髓系前体细胞(EMPs)和粒细胞-单核祖细胞(GMPs),靠近动脉和骨表面;其中,NN为总细胞数,KK为某细胞类型的总数量,nn为邻域内细胞数,kk为邻域内该细胞类型的数量。除了上述文章中的使用固定K近邻方法(

2025-03-26 21:38:06 1057

原创 单细胞文献阅读--scRank利用目标扰动基因调控网络,从scRNA-seq 数据中推断出药物反应细胞类型

记录下最近阅读的一篇于2024年6月在Cell Reports Medicine上发表的文章"scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network",记录下翻译过程,以备后期随时翻阅。引言细胞对药物的反应表现出巨大的异质性,这主要归因于细胞群体的多样性。在不同细胞的特定生物网络中,药物与其靶点(如受体或酶)相互作用会产生不

2025-03-23 16:15:59 854

原创 Nat Commun | 单细胞和空间转录组学分析构建NSCLC免疫和非免疫区图谱

肺癌是第二大常见的癌症,也是全球癌症相关死亡的主要原因。肿瘤生态系统包含多种类型的免疫细胞,其中髓系细胞尤为常见,并在促进疾病方面发挥了重要作用。在本项研究中,通过单细胞和空间转录组学,对来自 25 名未接受治疗的腺癌和鳞状细胞癌患者的约 90 万个细胞进行了分析。我们注意到抗炎巨噬细胞与 NK 细胞/T 细胞之间存在逆相关关系,且肿瘤内 NK 细胞的细胞毒性降低。虽然在腺癌和鳞状细胞癌中观察到类似的细胞类型组成,但我们发现各种免疫检查点抑制剂的共表达存在显著差异。

2025-03-20 21:10:42 996

原创 空间转录组 | 细胞niche分析

空间转录组数据分析中有个比较重要的概念就是细胞生态位(niche),简单理解就是组织中一组具有特定细胞类型组成和功能的空间区域。今年2月份发表在Nature Genetics上的一篇空间转录组学揭示与肺纤维化中远端肺重塑相关的分子生态位失调文章中,着重分析了细胞生态位和分子生态位。文章一句话简单概括了细胞niche是怎么计算的,用的是Seurat5里的BuildNicheAssay函数,先找每个细胞最近邻的25个细胞,然后K-means无监督聚类,今天介绍下我们自己用python重写的函数实现。

2025-03-19 21:20:10 376

原创 Xenium最新文章 | 空间转录组揭示食管癌多阶段空间演化图谱

近期,Cancer Cell 发表了一项由中国多机构合作的重磅研究,通过单细胞多阶段空间转录组技术,首次绘制了ESCC从正常组织到癌变的演化图谱,揭示了JAG1-NOTCH1信号驱动的CAF-Epi生态位在癌症进展中的核心作用。正常食管上皮中的成纤维细胞主要维持细胞外基质的结构和支持功能,而在食管癌阶段,这些成纤维细胞被激活转变为癌相关成纤维细胞(CAFs),与侵袭性上皮细胞形成“CAF-Epi”微环境,促进肿瘤的免疫逃逸和进展。他们发现,CAF-Epi微环境相关分子的表达水平与食管癌患者的预后密切相关。

2025-03-11 21:24:43 653

原创 Xenium数据分析 | 数据预处理、单细胞降维聚类、细胞类型定义

上节我们下载10x官方数据后,使用spatialdata框架进行数据读取,这节我们拿到单细胞数据后,使用常规单细胞数据分析流程,进行数据质控、低质量细胞删除、降维聚类、筛选特征基因、参考文章细胞类型marker进行细胞类型定义。封装一个细胞类型占比绘图函数,可以绘制单样本或多样本分开的饼图、柱状图。数据处理大致过程如下。

2025-03-09 12:14:11 551

原创 Xenium数据分析 | 下机数据读取

文件解压缩后,文件层级展示如下图,一般一个FOV对应的是一个样本,一个样本对应一个文件夹结果,一张芯片上最多可以选8个FOV,若果一张芯片上拼的样本数超过8个,就会有多个样本被并到一个FOV中,后续下机数据分析的时候想要拆分开的话,需要使用Xenium browser手动圈选,拿到个样本的barcodes,然后就可以拆分样本(一般TMA样本都需要手动圈选操作)。这里我们下载的数据就只有一个FOV,也就是只有一个样本,所以下图展示的是这一个样本的数据。data_dir参数是xenium下机数据文件位置;

2025-03-06 10:51:13 1286

原创 Xenium | 空间原位转录组数据分析全解

10x Genomics推出的Xenium平台基于高通量的原位杂交技术,通过使用特异性探针捕获 RNA 分子,并在组织切片上直接检测信号,使得我们能够在单细胞分辨率的基础上,精确地检测和定位组织切片中的基因表达情况。最近有几位同学后台私信我,希望能完整介绍下Xenium数据分析全流程,以及空转数据能做的分析有哪些,我上网查了下,好像还真没有一个全面完整的教程,于是乎,我们使用10x官方公布的测试数据,基于之前介绍的spatialdata框架进行一个系列的完整的介绍。2. 数据预处理,单细胞降维聚类。

2025-03-06 10:48:41 1455 1

原创 单细胞文献阅读--胃癌单细胞测序揭示复杂的细胞间相互作用和可选择的T细胞衰竭轨迹

记录下最近阅读的一篇于2022年8月在Nature Communications上发表的文章"scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory",记录下翻译过程,以备后期随时翻阅。 摘要胃癌(GC)的肿瘤微环境(TME)对于肿瘤控制被认为很重要,但 GC 的具体特征尚未完全理解。我们生成了来自 10 位 GC 患者的匹配肿瘤周

2025-02-25 22:02:24 674

原创 SpatialData:空间组学数据的统一框架与Xenium5k下机数据读取实战

空间组学技术(如 Xenium、Visium 等)正在彻底改变我们对生物组织的理解,为我们提供了基因表达和空间位置的双重信息。SpatialData 提供了一种统一的数据格式和 Python 库,支持数据加载、对齐、查询和跨模态分析,极大地简化了空间组学数据的处理流程。SpatialData 与 scverse 生态系统(如 Scanpy、Squidpy)无缝集成,支持单细胞和空间组学数据的联合分析。应运而生——一个开源的、通用的数据框架,旨在统一存储、处理和分析空间组学数据。

2025-02-19 20:53:57 1100

原创 Nat Commun | 单细胞视角下的肿瘤微环境:30种癌症的生态系统全景解析

最近遇到了好几个老师在单细胞数据分析完成后,对某个基因在特定癌症类型或细胞类型中的表达感兴趣,希望可以快速直接从泛癌数据集中提取相关信息。例如想知道在CD8+ T细胞中的表达情况,首先需要在公共数据集中筛选相关细胞类型和癌症类型,然后获取表达谱,最后各种绘图展示。这样做虽然可行,但是比较浪费时间,在收集泛癌数据中看到了24年的一篇文章,整合了490万个单细胞转录组数据,涵盖了30种癌症类型,构建了一个全面的肿瘤-正常生态系统图谱,同时也提供了处理后的数据下载,下载后简单处理后就能直接用,为客户摘要。

2025-02-16 12:02:41 1336

原创 开源模型DeepSeek-R1 API接入本地使用

最近国产AI大模型DeepSeek爆火出圈,登顶中美App Store下载榜,还在性能、性价比上碾压了ChatGPT和Google Gemini等硅谷巨头,直接杀入科技圈C位,成为现象级应用!但是,在使用DeepSeek网页版应用的时候,经常会出现服务器繁忙的情况,体验很不好。看了网上很多人推荐本地部署DeepSeek,大多数人使用的是蒸馏后的8B/32B/70B版本,本质是微调后的Llama或Qwen模型,并不能完全发挥出DeepSeek R1的实力。

2025-02-16 12:01:03 357

原创 Visium HD数据分析之空间聚类算法Banksy

然而,由于细胞状态受其周围细胞的影响,将转录组数据与细胞的空间信息结合起来进行聚类分析,将更有助于揭示细胞在组织中的分布和相互作用。相比于传统的单细胞聚类算法,BANKSY在细胞/Spots的表达矩阵的基础上,进一步联合了空间坐标信息,这种策略能够有效提高细胞/Spots分类的准确性和效率,进而揭示细胞间的相互作用和微环境影响。为了控制细胞自身和邻域特征对嵌入中细胞-细胞距离的相对贡献,BANKSY使用一个混合参数,λ∈ [0, 1],来权衡细胞转录组矩阵和邻域表达矩阵(平均值和AGF;

2024-12-30 22:05:54 1334

原创 Visium HD使用Cellpose进行细胞分割-补充

上节我们介绍了Visium HD使用Cellpose进行细胞分割获取单细胞精度空间数据,后台有许多同学私信我一些问题,有些同学对我将详细代码贴出来很感激,因为这些分析有些公众号是需要付费才能看到,还有几个同学问了我初次尝试过程中也遇到的问题,看来大家对使用Cellpose进行细胞分割很感兴趣,这里我对比较有代表性的几个问题做些补充说明。我们首先对tif图像进行下采样,是为了节省计算资源,因为我的机器只有64G内存,有些项目tif太大运行卡顿,所以做了图像下采样。微信公众号: 生信大杂烩。

2024-12-30 21:58:32 663

原创 Visium HD使用Cellpose进行细胞分割获取单细胞精度空间数据

其实我们还可以使用Qupath导入H&E图像,使用Cellpose或者一些开源的机器学习算法可视化进行细胞分割,好处是可以自己训练模型,然后细胞分割后直观就能看到,如果不满意就可以微调参数进行分割,直到能将绝大多数细胞分割出来,最后可以导出这些细胞的坐标信息,然后就是使用上面bin-to-cell部分的代码,就能达到更好的结果。Cellpose经过多样化的数据集训练,具有较强的通用性,能够适应不同类型的细胞图像,而无需用户进行大量的重新训练或调整参数;微信公众号: 生信大杂烩。

2024-12-26 20:35:29 1348

原创 ENACT: Visium HD数据的端到端分析流程

我们使用bin_to_cell_method="weighted_by_area"进行分析,在P1_CRC样本识别到了大概30万个细胞,拿到adata后,我们首先过滤低质量细胞,然后进行降维聚类(如果bin-to-cell结果准确的话,降维聚类后的UMAP应该像单细胞测序结果一样),但是发现UMAP结果还是很混杂,并且比单纯细胞核分割结果还差,猜测可能我们用的这张片子细胞分割是不是用其他的bin_to_cell方法会更好。,无非是bin-to-cell的分配方法不同。既然要分割细胞,而且图像是HE,

2024-12-21 22:10:29 1926

原创 Visium HD 空间转录组分析探索之--细胞核分割

分析代码很很简单,10x官网有详细描述https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd, 同时github也有相应的封装好的代码https://github.com/10XGenomics/HumanColonCancer_VisiumHD/blob/main/Methods/NucleiSegmentation.py, 拿来就能用,要注意的是需要根据自己的数据略微调整参数。简单来说就是图像识别,微信公众号:生信大杂烩。

2024-12-16 22:15:37 1297

原创 Visium HD 空间转录组分析探索之--细胞类型注释(RCTD解卷积)

此外,spacexr正在空间文件夹中查找以tissue_positions开头的文件,这意味着如果tissue_positions.parquet和tissue_positions.csv都在空间文件夹中,则会混淆spacexr。前面一节经过基础分析后,我们得到了8um bin单细胞降维聚类结果,接下来就可以对上述降维聚类后的结果进行细胞类型注释了,细胞类型注释不管单细胞还是空间转录组都是非常重要的一步,如果对于细胞类型注释不准确,后面的分析基本上无从说起了。微信公众号: 生信大杂烩。

2024-12-11 21:14:17 4664

原创 Visium HD 空间转录组分析探索之--基础分析

上节我们完成了Space Ranger分析,在输出结果binned_outputs文件夹内默认生成了2um,8um,16um bin的结果,这节我们使用10x文章中推荐的8x8um bin结果进行后续分析。为了演示,我们取P1_CRC样本数据进行后续分析(多样本合并一般都需要进行去批次处理,如果有需要,后续我们会继续分享多样本合并分析步骤)。

2024-12-09 21:27:14 1545

原创 Seurat 4.0版本安装

Seurat最初于2015年首次发布,并且在之后的版本中经过持续的更新和改进。这个工具在单细胞生物学研究中得到了广泛的应用,为科学家们提供了强大的工具来深入了解单个细胞的基因表达和细胞群体的异质性。目前,Seurat已经发布到V5.1版本。

2024-12-07 22:13:28 642

原创 Visium HD 空间转录组分析探索之--SpaceRanger分析

微信公众号:生信大杂烩。

2024-12-07 13:34:48 2198

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除