Visium HD 空间转录组分析探索之--SpaceRanger分析

      10x Genomics Visium 空间转录组是基于完整的组织切片而进行的基因表达无偏检测。该技术通过对置于载玻片上特定捕获区域内的组织切片进行H&E染色和拍照以保留样本的组织形态学信息,然后对样本进行透化处理,将RNA释 放并与捕获区域内的寡核苷酸探针进行杂交,使得不同位点的样本基因信息被SpatialBarcode标记。该技术将基因表达活跃度信息与组织形态学信息结合起来,呈现了组织和基因表达复杂性的新视图。2024年6月,10X公司第一篇 Visium HD的文章在bioRxiv预印,介绍了分辨率可达2 μm, 能实现单细胞分辨率的全转录组空间分析技术Visium HD,以其单细胞分辨率、连续的组织覆盖、高质量的空间数据特性引起了大家的注意。

      为了学习Visium HD数据分析流程,我们准备使用10x官方公布的人结直肠癌样本数据,从原始数据开始,一步步实现文章中的分析结果。我们下载了几个CRC样本测序原始数据、CytAssist导出的组织图像、组织切片的H&E高清图像,公开数据下载地址:https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-human-crc

Visium HD技术原理

      Visium HD工作流程类似于v2版本CytAssist支持的Visium空间基因表达工作流程。这个流程将标准的组织学过程与简单的分子生物学方案相结合,在获取组织切片的H&E或IF图像的同时,获取单细胞尺度的全转录组空间基因表达读数。Visium HD已经支持人和小鼠的FFPE、FF样本,样本准备要求与Visium CytAssist(V2)相同。为获得理想的测序数据结果,应确保组织样本的细胞核形态正常、有高质量的RNA以及在实验过程中不会出现脱片等异常情况。Visium HD的实验流程与Visium CytAssist(V2)相同,包括以下主要实验步骤:

(1)样本准备与成像:将FFPE样本切片贴于载玻片有效转片区域内,进行脱蜡、HE染色与图像扫描、脱色和解交联,然后立即进行探针杂交;

(2)探针过夜杂交并清洗后,进行探针连接;

(3)在CytAssist转片仪上完成转片;

(4)将Visium HD玻片置于PCR仪上进行探针延伸;

(5)洗脱并收回探针进行预扩增与文库构建;

(6)高通量测序与数据分析。

Visium HD空间基因表达载玻片包含两个6.5 x 6.5 mm 捕获区域,其中寡核苷酸连续排列在数百万个2 x 2μm正方形中,且芯片无组织间隙,实现单细胞分辨率空间转录组测序的同时达到了全组织覆盖度。数据分析可以以2 μm为最小分辨率,也可以展示多个Bin的分辨率,我们以8x8μm Bin为最小分辨率进行后续分析。

Space Ranger软件安装

软件及参考基因组下载地址:https://www.10xgenomics.com/support/software/space-ranger/downloads

Visium HD图像手动对齐导出对齐参数

Space Ranger虽然有自动图像检测算法来确定基准标记的位置并识别组织边界,但是经常结果不是很理想,所以通常需要Loupe Browser以交互方式将图像与载玻片的基准标记位置对齐,并导出手动对齐参数以在Space Ranger运行中使用。

上传Visium HD CytAssist 图像

填入HD芯片信息,直接导入CytAssist的图像后会自动识别芯片编号和捕获区域

按照提示,校准捕获区域

上传组织H&E高清图像

左右两侧选定对应锚点,一般3~5个左右即可

导出对齐参数json文件,该文件后续Space Ranger分析时需要传入

Space Ranger分析

spaceranger count \
	--id=P1_CRC \
	--transcriptome=/database/refdata-gex-mm10-2020-A \
	--fastqs=/home/data/Visium_HD_Human_Colon_Cancer/fastq \
	--sample=P1_CRC \
	--image=/home/data/Visium_HD_Human_Colon_Cancer/images/Visium_HD_Human_Colon_Cancer_image.tif \
	--slide=H1-VM2JXXK \
	--area=A1 \
	--localcores=32 \
	--localmem=64 \
	--create-bam false \
	--probe-set=/home/software/spaceranger-3.0.0/probe_sets/Visium_Mouse_Transcriptome_Probe_Set_v2.0_mm10-2020-A.csv \
	--cytaimage=/home/data/Visium_HD_Human_Colon_Cancer/images/Visium_HD_Human_Colon_Cancer_tissue_image.btf \
	--loupe-alignment=/home/data/H1-VM2JXXK-A1-fiducials-image-registration.json

Space Ranger完成后生成结果文件夹

Space Ranger输出文件结构

binned_outputs文件夹内默认生成了2um,8um,16um bin的结果,Spaceranger v3.1版本后可以自定义生成2-100um的偶数bin,同时也会生成相应的cloupe文件,之前版本只会生成8um bin的cloupe文件。我们使用10x文章中推荐的8x8um bin进行后续分析。

web_summary结果

微信公众号:生信大杂烩

### 空间转录组数据分析中的拟时序分析空间转录组数据的背景下,拟时序分析旨在揭示细胞随时间演变的过程。这种类型的分析特别适用于追踪发育过程、分化路径或其他动态变化。然而,在进行此类分析之前,需先理解并处理好空间位置信息。 #### 数据预处理与特征提取 对于10X Genomics平台产生的空间转录组数据,通常会涉及到多个步骤的数据预处理工作。这包括但不限于质量控制(QC),去除低表达水平或背景噪音较高的spot区域;接着是对每个spot内检测到的所有mRNA分子计数矩阵标准化处理[^1]。这些操作确保了下游分析的有效性和准确性。 #### 构建时空模型 一旦完成了初步的数据清理和转换之后,则需要考虑如何将时间和空间维度结合起来建立合适的数学/统计框架用于描述细胞状态转变模式。一种常见做法是在二维平面上定义邻居关系(即所谓的“社区”),并通过计算同型分数(反映相同类型之间的联系紧密程度) 和异型分数 (衡量不同类型间的交互情况) 来量化不同cell type之间相互作用强度。这种方法有助于识别潜在的功能模块或者信号传导途径。 #### 应用单细胞拟时序工具扩展至空间领域 尽管传统上单细胞测序技术更常用来做拟时序重建,但现在也有不少尝试将其应用于ST-seq数据集的研究案例。例如Monocle3就是一个流行的选择之一,它支持多种输入格式,并允许用户指定额外的空间坐标作为辅助变量参与排序流程设计中去[^2]。除此之外还有其他一些新兴算法如Slingshot, PAGA等也可以考虑纳入考量范围之内。 ```python import scanpy as sc from monocle import recipe_velocity adata = sc.read_10x_h5('filtered_feature_bc_matrix.h5') sc.pp.filter_cells(adata, min_genes=200) sc.pp.normalize_total(adata, target_sum=1e4) sc.pp.log1p(adata) # Add spatial coordinates to adata.obs or .obsm field before running this command. recipe_velocity(adata, experiment_type='spatial', reduction_method='umap') sc.pl.embedding(adata, basis='X_umap', color=['cluster_labels']) ``` 上述代码片段展示了使用Scanpy库加载经过过滤后的10X Visium数据文件,并对其进行基本的质量控制措施后调用了来自`monocle`包里的函数来进行基于UMAP降维的结果可视化展示。注意这里假设已经预先设置了样本点的位置属性以便于后续分析能够充分利用空间结构特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值