R-概率统计与模拟(五)彩票连号、归纳法以及二项分布

《R-概率统计与模拟》的系列文章已经写了四篇。其中有经过整理,内容相对全面,并且有内在联系的文章;也有文内几个小节相对独立,没有内在联系的文章。后一类文章正是笔者在学习过程中当时当地遇到了有意思的问题,即时地去解决并记录下来的结果。本文也仍然是这一类风格。学习是零散的过程,等到积累了一定的素材,才能进行整理归纳。

本文是《R-概率统计与模拟》系列文章的第五篇,包含了三个小节:

  • 彩票至少包含一组连续号码的概率
  • 用归纳法解决概率问题的一个例题
  • 多个独立且符合同一个伯努利分布的变量的和服从二项分布

彩票至少包含一组连续号码的概率

买过超级大乐透的朋友应该熟悉,这种颇受欢迎的彩票分为两区,前区是从1到35这35个数字中无重复地选择5个数字,后区是从1到12这12个数字中无重复地选择2个数字。选定的前(后)区数字与开奖的前(后)区数字重合得越多,奖金越多。

很多彩票分析网站在统计历史开奖数字的各种信息,希望能从中找出些许的规律。这些信息中很多都是在统计“频率”,而这些“频率”其实都是有理论的概率值的。比如,“前区号码中有连号的概率是多少”?也就是:从1到35这35个数字中随机等概率且无重复地抽取5个数字,这5个数字中至少有两个数字是连号的概率是多少?

这个问题可以抽象为:从1到 n n n n n n个数字中随机等概率且无重复地抽取 k   ( for  n ≥ 2 k − 1 ) k \ (\text{for } n \ge 2k-1 ) k (for n2k1)个数字,这 k k k个数字中至少有两个数字是连号的概率是多少?
(可以简单推论,当 n < 2 k − 1 n < 2k-1 n<2k1时,抽取出的 k k k个数字中有连号数字的概率是1。)

这是一个蛮有意思的概率题,我们可以计算理论值,也可以用模拟的方法去计算其近似值。

其理论值是:
1 − ( n − k + 1 k ) ( n k ) 1 - \cfrac {\binom{n-k+1}{k}} {\binom{n}{k}} 1(kn)(knk+1)

对于超级大乐透前区, n = 35 , k = 5 n=35, k=5 n=35,k=5,所以连号的概率是:
1 − ( 35 − 5 + 1 5 ) ( 35 5 ) ≈ 0.4766043 1 - \cfrac {\binom{35-5+1}{5}} {\binom{35}{5}} \approx 0.4766043 1(535)(5355+1)0.4766043

用代码模拟的近似值是0.4766973:所用的代码如下:

## Q1
oneTry <- function(n, k) {
  res <- sort(sample(1:n, size=k))
  ifelse(1 %in% (res[-1] - res[-length(res)]), 1, 0)
}

ntry <- 10000000
nn <- 35
nk <- 5
set.seed(123)
sum(replicate(ntry, oneTry(nn, nk))) / ntry  # 0.4766973 when ntry = 10000000 and seed = 123.

理论值的推导:(参考《Probability and Statistics (4ed)》 DEGROOT等著)

n ≥ 2 k − 1 n \ge 2k-1 n2k1时,假设 i 1 < i 2 < ⋯ < i k i_1 < i_2 < \cdots < i_k i1<i2<<ik是从1到 n n n n n n个数字中随机等概率且无重复抽取的一组数字,按从小到大排序。令 j s = i s − ( s − 1 ) ,  for  s = 1 , 2 , … , k j_s = i_s - (s - 1), \text{ for } s = 1,2,\dots,k js=is(s1), for s=1,2,,k,也就是:
j 1 = i 1 , j 2 = i 2 − 1 ,    ⋮ j k = i k − ( k − 1 ) . \begin{aligned} j_1 & = i_1, \\ j_2 & = i_2 - 1, \\ & \ \ \vdots \\ j_k & = i_k - (k - 1). \end{aligned} j1j2jk=i1,=i21,  =ik(k1).
那么可以证明:

  1. ( i 1 , i 2 , … , i k ) (i_1, i_2,\dots,i_k) (i1,i2,,ik)这一组数中有连号的数等价于 ( j 1 , j 2 , … , j k ) (j_1, j_2,\dots,j_k) (j1,j2,,jk)这一组数中有重复的数。
  2. 对于 1 ≤ j 1 ≤ j 2 ≤ ⋯ ≤ j k ≤ n − k + 1 1 \le j_1 \le j_2 \le \cdots \le j_k \le n - k + 1 1j1j2jknk+1 ( j 1 , j 2 , … , j k ) (j_1, j_2,\dots,j_k) (j1,j2,,jk)中没有重复数的全部可能的组合的数量是 ( n − k + 1 k ) \binom{n-k+1}{k} (knk+1)
  3. ( i 1 , i 2 , … , i k ) (i_1, i_2,\dots,i_k) (i1,i2,,ik)中没有连号数的全部可能的组合的数量是 ( n − k + 1 k ) \binom{n-k+1}{k} (knk+1)
  4. ( i 1 , i 2 , … , i k ) (i_1, i_2,\dots,i_k) (i1,i2,,ik)中没有连号数的概率是 ( n − k + 1 k ) ( n k ) \cfrac {\binom{n-k+1}{k}} {\binom{n}{k}} (kn)(knk+1)
  5. ( i 1 , i 2 , … , i k ) (i_1, i_2,\dots,i_k) (i1,i2,,ik)中至少有一组连号数的概率是 1 − ( n − k + 1 k ) ( n k ) 1 - \cfrac {\binom{n-k+1}{k}} {\binom{n}{k}} 1(kn)(knk+1)

用归纳法解决概率问题的一个例题

归纳法是数学中解决问题的重要方法,当然在概率统计里面也会大有用武之地。比如这个题目:

“假设有10个硬币,第 i i i个硬币正面朝上的概率是 1 2 i + 1 \frac{1}{2i+1} 2i+11,那么10个硬币都掷一次后,正面朝上的硬币数是偶数的概率是多少?”

我们可以把上面的题目抽象为:假设有 n n n n n n是正偶数)个硬币,第 i i i个硬币正面朝上的概率是 1 2 i + 1 \frac{1}{2i+1} 2i+11,那么 n n n个硬币都掷一次后,正面朝上的硬币数是偶数的概率是多少?

我们可以先看看 n = 2 n=2 n=2时的情形,可以很容易计算出结果是:
1 3 × 1 5 + 2 3 × 4 5 = 3 5 \frac{1}{3} \times \frac{1}{5} + \frac{2}{3} \times \frac{4}{5} = \frac{3}{5} 31×51+32×54=53

n = 4 n=4 n=4时的计算稍微复杂,结果是:
1 3 × 1 5 × 1 7 × 1 9 + 2 3 × 4 5 × 6 7 × 8 9 + ∑ 1 ≤ i < j ≤ 4 1 2 i + 1 × 1 2 j + 1 × ∏ k = 1 4 ( 1 − 1 2 k + 1 ) ( 1 − 1 2 i + 1 ) ( 1 − 1 2 i + 1 ) = 5 9 \begin{aligned} & \frac{1}{3} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{9} \\ & + \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{8}{9} \\ & + \sum_{1 \le i < j \le 4} \frac{1}{2i+1} \times \frac{1}{2j+1} \times \frac {\prod_{k=1}^4 \left(1-\frac{1}{2k+1}\right) } {\left(1-\frac{1}{2i+1}\right) \left(1-\frac{1}{2i+1}\right)} \\ &= \frac{5}{9} \end{aligned} 31×51×71×91+32×54×76×98+1i<j42i+11×2j+11×(12i+11)(12i+11)k=14(12k+11)=95

n = 2 n=2 n=2以及 n = 4 n=4 n=4时的结果,我们可以推测,更一般的结果是 n + 1 2 n + 1 \frac{n+1}{2n+1} 2n+1n+1。这可以用归纳法证明:

n = 2 n=2 n=2时结论成立;
假设当 n = k n=k n=k k k k是正偶数)时结论成立,即掷 n n n个硬币后正面朝上的硬币数为偶数的概率是 k + 1 2 k + 1 \frac{k+1}{2k+1} 2k+1k+1,那么当 n = k + 2 n=k+2 n=k+2时,相应的概率可以这样计算:
Pr ⁡ \Pr Pr( k + 2 k+2 k+2个硬币正面朝上的硬币数为偶数) = Pr ⁡ \Pr Pr(前 k k k个硬币正面朝上的硬币数为偶数且后2个硬币正面朝上的硬币数为偶数) + Pr ⁡ \Pr Pr(前 k k k个硬币正面朝上的硬币数为奇数且后2个硬币正面朝上的硬币数为奇数)。
并且,
Pr ⁡ \Pr Pr(前 k k k个硬币正面朝上的硬币数为偶数且后2个硬币正面朝上的硬币数为偶数) = k + 1 2 k + 1 × [ 1 2 ( k + 1 ) + 1 × 1 2 ( k + 2 ) + 1 + 2 ( k + 1 ) 2 ( k + 1 ) + 1 × 2 ( k + 2 ) 2 ( k + 2 ) + 1 ] = 2 k 2 + 5 k + 3 ( 2 k + 1 ) ( 2 k + 5 ) \frac{k+1}{2k+1} \times \left[\frac{1}{2(k+1)+1} \times \frac{1}{2(k+2)+1} + \frac{2(k+1)}{2(k+1)+1} \times \frac{2(k+2)}{2(k+2)+1} \right] = \frac{2k^2+5k+3}{(2k+1)(2k+5)} 2k+1k+1×[2(k+1)+11×2(k+2)+11+2(k+1)+12(k+1)×2(k+2)+12(k+2)]=(2k+1)(2k+5)2k2+5k+3
同时,
Pr ⁡ \Pr Pr(前 k k k个硬币正面朝上的硬币数为奇数且后2个硬币正面朝上的硬币数为奇数) = [ 1 − k + 1 2 k + 1 ] × [ 1 2 ( k + 1 ) + 1 × 2 ( k + 2 ) 2 ( k + 2 ) + 1 + 2 ( k + 1 ) 2 ( k + 1 ) + 1 × 1 2 ( k + 2 ) + 1 ] = 2 k ( 2 k + 1 ) ( 2 k + 5 ) \left[1 - \frac{k+1}{2k+1} \right] \times \left[\frac{1}{2(k+1)+1} \times \frac{2(k+2)}{2(k+2)+1} + \frac{2(k+1)}{2(k+1)+1} \times \frac{1}{2(k+2)+1} \right] = \frac{2k}{(2k+1)(2k+5)} [12k+1k+1]×[2(k+1)+11×2(k+2)+12(k+2)+2(k+1)+12(k+1)×2(k+2)+11]=(2k+1)(2k+5)2k
所以,
Pr ⁡ \Pr Pr( k + 2 k+2 k+2个硬币正面朝上的硬币数为偶数) = 2 k 2 + 5 k + 3 ( 2 k + 1 ) ( 2 k + 5 ) + 2 k ( 2 k + 1 ) ( 2 k + 5 ) = k + 3 2 k + 5 = ( k + 2 ) + 1 2 ( k + 2 ) + 1 = n + 1 2 n + 1 \frac{2k^2+5k+3}{(2k+1)(2k+5)} + \frac{2k}{(2k+1)(2k+5)} = \frac{k+3}{2k+5} = \frac{(k+2)+1}{2(k+2)+1} = \frac{n+1}{2n+1} (2k+1)(2k+5)2k2+5k+3+(2k+1)(2k+5)2k=2k+5k+3=2(k+2)+1(k+2)+1=2n+1n+1
所以当 n = k + 2 n=k+2 n=k+2时结论也成立。

回到最开始的题目,当 n = 10 n=10 n=10时的概率是 11 21 \frac{11}{21} 2111

我们用代码进行精确计算的值是0.5238095,模拟计算的值是0.523596。所用代码如下:

######### Q2 ############
## Q2 - exact answer
# get the probability that there are n coins facing up.
getProbNUp <- function(nu) {
  # nu: num of coins facing up.
  if (nu == 0) {
    return(prod(down_prob))
  } else if (nu == dice_num) {
    return(prod(up_prob))
  } else if (nu < 0 | nu > dice_num) {
    print("Error: wrong param.")
    return(-1)
  }
  all_comb <- combn(dice_num, nu)
  vprob <- apply(all_comb, 2, function(x) prod(up_prob[x]) * prod(down_prob[-x]))
  sum(vprob)
}
dice_num <- 10
up_prob <- 1 / (2 * 1:dice_num + 1)
down_prob <- 1 - up_prob
sum(sapply(seq(0, dice_num, 2), getProbNUp))  # 0.5238095

## Q2 - simulation
oneTry <- function() {
  vres <- sapply(1:dice_num, function(i)   # 0 - up; 1 - down;
    sample(0:1, size=1, replace=T, prob=c(up_prob[i], down_prob[i])))
  ifelse(sum(vres == 0) %% 2 == 0, 1, 0)
}
ntry <- 1000000
set.seed(123)
sum(replicate(ntry, oneTry())) / ntry   # 0.523596 when ntry = 1000000 and seed = 123.

多个独立且符合同一个伯努利分布的变量的和服从二项分布

这是一个基础的结论。我们可以用模拟其 p.d.f. \text{p.d.f.} p.d.f. 或者 c.d.f. \text{c.d.f.} c.d.f. 来看:
模拟 p.d.f. \text{p.d.f.} p.d.f.,用R语言中的 hist 或者ggplot2包中的geom_histogram 函数画出模拟的概率直方图。
在这里插入图片描述

模拟 c.d.f. \text{c.d.f.} c.d.f.,用R语言中的 ecdf 函数画出模拟的累积分布曲线。
在这里插入图片描述

具体代码如下:

obinom <- function(n, p) {
  sum(sample(0:1, size=n, replace = T, prob=c(1-p, p)))
}

sbinom <- function(n, p, N) {
  replicate(N, obinom(n, p))
}

SEED <- 123
ber.p <- 0.3
ber.n <- 100
ber.N <- 100000
set.seed(SEED)
ber.simu <- sbinom(ber.n, ber.p, ber.N)
set.seed(SEED)
ber.theo <- rbinom(ber.N, ber.n, ber.p)

# p.d.f. (by plotting histogram and density)
library(ggplot2)
library(dplyr)
library(tidyr)
data.pdf <- tibble(Simulative=ber.simu, Theoretical=ber.theo) %>%
  gather(type, value)
data.pdf %>% ggplot(aes(x=value, y=..density..)) +
  geom_histogram(aes(fill=type), position="identity", alpha=.3) +
  geom_density(aes(color=type), alpha=.3)

# c.d.f.
simu.cdf <- ecdf(ber.simu)
theo.cdf <- ecdf(ber.theo)
plot(simu.cdf, do.points=F, verticals=T, col="red",
     main="Simulation for sum of n i.i.d. variables\n(Bernoulli distribution)")
lines(theo.cdf, do.points=F, verticals=T, col="blue")
legend("bottomright", legend=c("Simulative", "Theoretical"), 
       col=c("red", "blue"), lty=1, bty="n")
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值