上海小聚

### Matlab 中的最大最小聚类算法实现 最大最小聚类是一种基于距离度量的聚类方法,其核心思想是从数据集中选取初始中心点,并逐步扩展聚类范围直到满足特定条件为止。以下是使用 MATLAB 实现最大最小聚类的一个示例代码: ```matlab function [centers, clusters] = max_min_clustering(data, k) % MAX_MIN_CLUSTERING 使用最大最小策略进行聚类 % % 输入: % data - 数据矩阵 (n x d),其中 n 是样本数,d 是特征维度 % k - 聚类数量 % % 输出: % centers - 聢心位置 (k x d) % clusters - 每个样本所属的聚类标签 (n x 1) [n, ~] = size(data); if k > n || k < 1 error('参数 k 的取值不合法'); end % 初始化第一个聚类中心为随机选择的数据点 randIndex = randi(n); centers(1, :) = data(randIndex, :); for i = 2:k % 计算每个点到已选中心的距离 distances = zeros(n, i-1); for j = 1:i-1 distances(:, j) = sqrt(sum((data - repmat(centers(j,:), n, 1)).^2, 2)); end % 找到每个点到最近中心的距离 minDistances = min(distances,[],2); % 新增一个最远离已有中心的点作为新的中心 [~, newCenterIndex] = max(minDistances); centers(i,:) = data(newCenterIndex,:); end % 将每个点分配到离它最近的中心所在的簇 clusters = zeros(n, 1); for i = 1:n point = data(i, :); distToCenters = sqrt(sum((point - centers).^2, 2)); [~, clusterIdx] = min(distToCenters); clusters(i) = clusterIdx; end ``` 上述代码实现了最大最小聚类的核心逻辑[^3]。具体来说,函数 `max_min_clustering` 接收输入数据和目标聚类数目 \(k\) 并返回最终选定的聚类中心以及对应的聚类标签。 #### 关键步骤解析 1. **初始化**: 首先从数据集中随机挑选一点作为首个聚类中心。 2. **迭代更新**: 对于后续每一个新中心的选择,总是寻找当前尚未成为中心的那个与现有所有中心距离最大的点。 3. **分配阶段**: 当所有的中心都确定之后,遍历整个数据集中的每一点并将其指派至与其最近的中心所代表的那一组群之中。 此方法特别适合用于解决那些传统 K-Means 方法可能无法有效应对的情况,比如当数据分布呈现非均匀特性或者存在显著噪声干扰的时候[^4]。 ### 结果可视化建议 为了更好地理解聚类的效果,在实际应用过程中还可以加入绘图功能来展示不同类别之间的划分情况。例如对于二维或三维空间内的数据点可以通过散点图直观展现出来;而更高维的情况下则可考虑降维技术如 PCA 来辅助观察。 相关问题
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值