Day 6
函数也是对象,内存底层分析
Python中,“一切皆是对象”。实际上,执行def定义的函数后,系统就创建了相应的函数对象。函数是对象,可以作为参数传递,也可以作为返回值返回
我们执行如下程序,然后进行解释:
def test01():
print('abcde')
test01() #()小括号表示调用的意思
c=test01
c()
print(id(test01)) #test01和c两个id相等,说明指向同一个对象
print(id(c))
print(type(c))
结果:
abcde
abcde
2334221336648
2334221336648
<class 'function'>
解释过程:
执行 ’def test01():’ ,就会在堆里创建一个函数对象,这个函数对象包含了函数中的参数信息,代码信息,然后栈里也保存了一个变量(叫做test01),它的值就是堆里对象的地址,然后当调用函数的时候’test01()’(()小括号在python中是调用的意思),test01会通过id地址找到堆里的函数对象,执行里面的代码;如果在调用‘c=test01 c()’,就再找。创建了一个函数对象,但是可以调用多次。
定义了一个新的变量c,就是把栈里test01的值拷贝给c,从而c也是指向堆里的同一个函数对象
变量的作用域(全局变量和局部变量)
变量起作用的范围称为变量的作用域,不同作用域内同名变量之间互不影响。变量分为:全局变量、局部变量
全局变量:
- 在函数和类定义之外声明的变量。作用域为定义的模块,从定义位置开始直到模块结束。
- 全局变量降低了函数的通用性和可读性,应尽量避免全局变量的使用。
- 全局变量一般做常量使用。
- 函数内要改变全局变量的值,使用global声明一下
局部变量:
- 在函数体中(包含形式参数)声明的变量
- 局部变量的引用比全局变量块,优先考虑使用
- 如果局部变量和全局变量同名,则在函数内隐藏全局变量,只使用同名的局部变量(优先)
【操作】栈帧讲解
#测试全局变量
a = 3 #a就是全局变量,整个模块都可以使用
def test01():
b = 4 #局部变量
print(b*10)
test01( #建立一个栈帧,然后丢掉
test01() #重新建立一个栈帧,然后丢掉
结果:
40
40
当调’a=3’时,堆里的值3会给栈里的变量a,定义test01,栈中的test01指向堆中的函数对象,调用test01(),当每一个函数被调用的时候,python会产生一个栈帧(stack frame),栈帧中存放局部变量b,栈帧就对应函数的第一次调用,调完之后栈帧就自动删掉了,当再调用的时候就再创建栈帧
【操作】全局变量的作用域测试
a = 100 #a就是全局变量,整个模块都可以使用
def test01():
global a #如果要在函数内改变全局变量的值,增加global关键字声明
print(a) #打印全局变量a的值
a=300
test01()
print(a)
结果:
100
300
【操作】全局变量与局部变量同名测试
#测试全局变量
a = 3 #a就是全局变量,整个模块都可以使用
def test01():
a=300
print(a) #局部变量a和全局变量a无关
test01()
print(a)
结果:
300
3
【操作】输出局部变量和全局变量
a = 100 #a就是全局变量,整个模块都可以使用
def test01(a,b,c):
print(a,b,c)
print(locals()) #打印输出的局部变量
print('#'*20)
print(globals()) #打印输出的全局变量
test01(2,3,4)
print(a)
结果:
2 3 4
{'a': 2, 'b': 3, 'c': 4}
####################
{'__name__': 'demo1', '__doc__': None, '__package__': '', '__loader__': <_frozen_importlib_external.SourceFileLoader object at 0x0000023FE551D788>, '__spec__':ModuleSpec(name='demo1',’a’:100, loader=<_frozen_importlib_external.SourceFileLoader object at 0x0000023FE551D788>,(只截取了部分全局变量,主要是看'a':100,还有许多其他的全局变量)
栈和堆理解:
在快递盒上
栈:是你的收件地址 堆:是你的快递物品
当需要引用这个变量的时候,是引用栈里的地址,去指向堆里的具体的值 这样做的目的是,当其他人也有这个物品的时候 就在栈里有多个人,指向堆里的一个值,一定程度上优化内存
数据存储在内存中,CPU靠数据在内存中的地址寻找数据。
局部变量和全局变量效率测试
局部变量的查询和访问比全局变量快,优先考虑使用,尤其是在循环的时候。
在特别强调效率的地方或者循环次数较多的地方,可以通过将全局变量转为局部变量提高运行速度。
【示例】
#测试局部变量、全局变量的效率
import math
import time
def test01():
start = time.time()
for i in range(10000000):
math.sqrt(30)
end = time.time()
print('耗时{0}'.format((end-start)))
def test02():
b = math.sqrt
start = time.time()
for i in range(10000000):
b(30)
end = time.time()
print('耗时{0}'.format(end - start))
test01()
test02()
结果:
耗时1.5329136848449707
耗时1.0686836242675781
参数的传递
函数的参数传递本质上就是:从实参到形参的赋值操作。Python中“一切皆对象”,所有的赋值操作都是“引用的赋值”。所有,Python中参数的传递都是“引用传递”,不是“值对值”。具体操作时分为两类:
- 对“可变对象”进行“写操作”,直接作用于原对象本身。
- 对“不可变对象”进行“写操作”,会产生一个新的“对象空间”,并用新的值填充这块空间。(起到其他语言的“值传递”效果,但不是“值传递”)
可变对象有:
字典、列表、集合、自定义的对象等
不可变对象有:
数字、字符串、元组、function等
传递可变对象的引用
传递参数是可变对象(例如:列表、字典、自定义的其他可变对象等),实际传递的还是对象的引用。在函数体中不创建新的对象拷贝,而是可以直接修改所传递的对象。
【操作】参数传递:传递可变对象的引用
b=[10,20]
def f2(m):
print('m',id(m)) #b和m是同一个对象
m.append(30) #由于m是可变对象,不创建对象拷贝,直接修改这个对象
f2(b)
print("b",id(b)) #m的id和b的id一样,所以指向同一个对象
print(b)
结果:
m 2008283697544
b 2008283697544
[10, 20, 30]
过程:
定义一个b的列表对象,在调用f2(b)的时候直接把b传进来了,就是传递一个可变的对象,就会直接把b的地址传递给m(m是一个局部变量)了,则m和b指向同一个对象,“m.append(30)”,原本堆里的对象又新指向30,同时得到“30”的地址。可以看到,通过m,操作了堆中的对象,多了一个元素。
函数调用完之后,栈帧就没有了,但是操作结果仍然在,所以传递可变对象的引用,他们指向的是同一个对象,所以做了修改之后,再去打印b,结果多了30,所以本质上操作的是原对象。
传递不可变对象的引用
传递参数是不可变对象(例如:int、float、字符串、元组、布尔值), 实际传递的还是对象的引用。在“赋值操作”时,由于不可变对象无法修改,系统会创建一个新的对象
【操作】参数传递:传递不可变对象的引用
a = 100
def f1(n):
print('n',id(n)) #传递进来的是a对象的值
n = n + 200 #由于a是不可变对象,因此创建新的对象n
print('n',id(n)) #n已经变成了新的对象
print(n)
f1(a)
print('a',id(a))
结果:
n 140721960168944
n 2106526823952
300
a 140721960168944
显然,通过id值我们可以看到n和a一开始是同一个对象,给n赋值后,n是新的对象
浅拷贝和深拷贝
为了更深入的了解参数递数的底层原理,我们需要了解:浅拷贝和深拷贝
我们可以使用内置函数:copy(浅拷贝)、deepcopy(深拷贝)
浅拷贝:不拷贝子对象的内容,只是拷贝子对象的引用
深拷贝:会连对象的内存也全部拷贝一份,对子对象的修改不会影响源对象
【操作】测试浅拷贝
#测试浅拷贝
import copy
a = [10,20,[5,6]] #列表里套个子列表
b = copy.copy(a)
print('a',a)
print('b',b)
b.append(30)
b[2].append(7) #b[2]是[5,6]
print('浅拷贝....')
print('a',a)
print('b',b)
结果:
a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
浅拷贝....
a [10, 20, [5, 6, 7]]
b [10, 20, [5, 6, 7], 30]
解析:
如图,b.append(30)加在自己这边,而b[2].append(7)由于是拷贝的a的,所以在原本a[2] 即[5,6]的地方加了7变成[5,6,7]
所以最终打印为:a[10, 20, [5, 6, 7]] 而没有30
【操作】测试深拷贝
mport copy
#测试深拷贝
def testDeepcopy():
a = [10, 20, [5, 6]] # 列表里套个子列表
b = copy.deepcopy(a)
print('a', a)
print('b', b)
b.append(30)
b[2].append(7) # b[2]是[5,6]
print('深拷贝....')
print('a', a)
print('b', b)
testDeepcopy()
结果:
a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
深拷贝....
a [10, 20, [5, 6]]
b [10, 20, [5, 6, 7], 30]
解析:
因为深拷贝b一开始就拷贝了a的全部对象,因此后续b在添加时,只需在自己这边进行操作,不会影响到a
传递不可变对象用的是浅拷贝
传递参数是不可变对象(例如:int、float、字符串、元组、布尔值),实际传递的还是对象的引用,但在“写操作”时,会创建一个新的对象拷贝。这个拷贝使用的是“浅拷贝”,不是“深拷贝”
a = 10 #元组是不可变的
print('a',id(a))
def test01(m):
print('m',id(m))
m=20
print(m)
print('m',id(m))
test01(a)
结果:(一开始a和m指向同一个对象(地址相同),之后m赋值为20,则指向了新的地址)
a 140721958789808
m 140721958789808
20
m 140721958790128
【操作】测试
##传递不可变对象时,不可变对象里面包含的子对象是可变的。
# 则方法内修改了这个可变对象,源对象也发生了变化
a = (10,20,[5,6]) #元组是不可变的
print('a',id(a))
def test01(m):
print('m',id(m))
m[2][0] = 888 #[5,6]中的5变为888
print(m)
print('m',id(m))
test01(a)
print(a)
结果:
a 2302774998904
m 2302774998904
(10, 20, [888, 6])
m 2302774998904
(10, 20, [888, 6])
解析:
a为元组,因此a不可变,但a中包含的子对象是列表可变,因此如图所示,函数方法内修改了m,最终源对象a也发生了变化
参数的几种类型
位置参数
函数调用时,实参默认按位置顺序传送,需要个数和形参匹配。按位置传递的参数,称为:“未知参数”
【操作】测试位置参数
#测试位置参数
def f1(a,b,c):
print(a,b,c)
f1(2,3,4)
f1(2,3) #报错,位置参数不匹配
结果:
Traceback (most recent call last):
File "C:/Users/Administrator/PycharmProjects/MyDemo/day1/demo1.py", line 6, in <module>
f1(2,3)
TypeError: f1() missing 1 required positional argument: 'c'
2 3 4
默认值参数
我们可以为某些参数设置默认值,这样这些参数在传递时就是可选的。称为“默认值参数”,默认值参数放到位置参数后面
【操作】测试默认值参数
#测试默认值参数
def f1(a,b,c=10,d=20): #默认值参数必须位于普通未知参数后面
print(a,b,c,d)
f1(8,9)
f1(8,9,19)
f1(8,9,19,29)
结果:
8 9 10 20
8 9 19 20
8 9 19 29
命名参数
我们也可以按照形参的名词传递参数,称为“命名参数”,也称“关键字参数”
【操作】测试命名参数
def f1(a,b,c): #默认值参数必须位于普通未知参数后面
print(a,b,c)
f1(8,9,19) #位置参数
f1(c=10,a=20,b=30) #命名参数
结果:
8 9 19
20 30 10
可变参数
可变参数指的是“可变数量的参数”。分两种情况:
可变参数指的是“可变数量的参数”。分两种情况:
- *param(一个星号),将多个参数收集到一个“元组”对象中
- **param(两个星号),将多个参数收集到一个“字典”对象中
【操作】测试可变参数处理(元组、字典两种方式)
def f1(a,b,*c): #这里的c是一个元组
print(a,b,c)
f1(8,9,19,20)
def f2(a,b,**c): #这里的c是一个字典
print(a,b,c)
f2(8,9,name='zhang',age=18)
def f3(a,b,*c,**d):
print(a,b,c,d)
f3(8,9,20,30,name='zhang',age=18)
结果:
8 9 (19, 20)
8 9 {'name': 'zhang', 'age': 18}
8 9 (20, 30) {'name': 'zhang', 'age': 18}
强制命名参数
在带星号的“可变参数”后面增加新的参数,必须在调用的时候是“强制命名参数”
【操作】强制命名参数的使用
def f1(*a,b,c):
print(a,b,c)
#f1(2,3,4)#会报错,由于a是可变参数,将2,3,4全部收集,造成b和c没有赋值
f1(2,b=3,c=4)
结果:
(2,) 3 4
lambda表达式和匿名函数
lambda表达式可以用来声明匿名函数。lambda函数时一种简单的、在同一行中定义函数的方法。lambda实际生成了一个函数对象
lambda表达式表达式只允许包含一个表达式,不能包含复杂语句(做简单的事情),该表达式的计算结果就是函数的返回值
lambda表达式的基本语法如下:
lambda arg1,arg2,arg3... :<表达式>
arg1/arg2/arg3为函数的参数。<表达式>相当于函数体、运算结果是:表达式的运算结果
【操作】lambda表达式使用
f = lambda a,b,c :a+b+c
print(f)
print(f(2,3,4))
g=[lambda a:a*2,lambda b:b*3,lambda c:c*4]
print(g[0](6),g[1](7),g[2](8))
结果:
9
12 21 32
eval()函数
功能:将字符串str当成有效的表达式来求值并返回计算结果
语法:eval(source[,globals[,locas]])->value
参数:
source:一个Python表达式或函数compile()返回的代码对象
globals:可选。必须是dictionary
locals:可选。任意映射对象
#测试eval()函数
s = "print('abcde')"
eval(s)
a = 10
b= 20
c = eval("a+b")
print(c)
结果:
abcde
30
【操作】测试含字典
dict1 = {"a":100,"b":200}
d = eval("a+b",dict1)
print(d)
结果:
300
递归函数
递归函数指的是:自己调用自己的函数,在函数体内部直接或间接的自己调用自己。递归类似数学中的“数学归纳法”。每个递归函数必须包含两个部分:
1.终止条件
表示递归什么时候结束。一般用于返回值,不再调用自己
2.递归步骤
把第n步的值和第n-1步相关联
递归函数由于会创建大量的函数对象、过量的消耗内存和运算能力,在处理大量数据时,谨慎使用
【操作】测试递归函数
#测试递归函数的基本原理
def test01(n):
print('test01',n)
if n ==0:
print('over')
else:
test01(n-1)
test01(4)
结果:
test01 4
test01 3
test01 2
test01 1
test01 0
over
若不设置终止条件,会一直执行,然后报错
【操作】使用递归函数计算阶乘(factorial)
def factoria(n):
if n==1:
return 1
else:
return n*factoria(n-1)
result = factoria(5)
print(result)
结果:
120