论文标题:Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system
作者信息:
- Md. Rokonuzzamana,b,c,*
- Saifur Rahman d
- M.A. Hannan e,f
- Mahmuda Khatun Mishu c
- Wen-Shan Tan a,b
- Kazi Sajedur Rahmang
- Jagadeesh Pasupuletic,
- Nowshad Amin h
机构信息:
- a School of Engineering & Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- b Centre for Net-Zero Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- c Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (The Energy University), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
- d Advanced Research Institute, Virginia Polytechnic Institute & State University, Arlington, VA 22203, USA
- e School of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- f School of Electrical Engineering, Korea University, Seongbuk-Gu, Seoul 136-701, Korea
- g Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- h Dept. of Electrical and Electronic Engineering, Faculty of Engineering, American International University-Bangladesh (AIUB), 408/1, Kuratoli, Dhaka 1229, Bangladesh
论文出处:Applied Energy 378 (2025) 124407
主要内容:
摘要: 随着智能电网的出现,家庭能源管理系统(HEMS)在优化能源使用和降低住宅部门成本方面具有巨大潜力。然而,有效控制电力消耗、降低能源费用、提高居民舒适度以及优化可再生能源资源(RESs)的协调仍然存在挑战。本研究开发了一个基于Levenberg-Marquardt(LM)算法的太阳能光伏集成家庭能源管理系统(IoHEMS)。选择LM算法是因为它在其他两种人工智能(AI)算法:贝叶斯正则化(BR)和缩放共轭梯度(SCG)中表现更好。在70%的数据用于训练、15%用于验证和15%用于测试的设置下,LM算法显示出0.999999的回归值、7.8e−5的梯度、2.7133e−9的性能和1e−7的动量参数。当训练数据集收敛到最优训练结果时,在1000个周期后实现了最佳验证性能,平均均方误差(MSE)接近零。所提出的系统通过有效管理四个家用电器:空调(AC)、热水器(WH)、洗衣机(WM)和冰箱(Ref),将传统家庭转变为智能家庭。所提出的模型实现了家用电器的精确开关功能和高效的电网到电池的利用,从而降低了高峰时段的电费。所提出的系统将物联网(IoT)功能与HEMS结合,利用智能插座(SPS)和无线传感器网络(WSN)节点。所提出的模型还支持蓝牙低能耗(BLE)连接以进行离线操作。定制的Android应用程序“MQTT仪表板”允许消费者每60秒监控一次电力使用、室温、湿度、湿度和家用电器状态。
**关键词:**家庭能源管理系统(HEMS)、Levenberg-Marquardt(LM)算法、人工智能(AI)、太阳能光伏(PV)能源、物联网(IoT)
1. 引言: HEMS是一个自动化和计算机化的系统,不需要人为交互。智能HEMS在电器和公用事业供应商之间进行交互,以转移需求以减少能源消耗。它还便于最终用户调整和减少他们的能源消耗。2021年,一些发达国家的家庭能源消耗增加了超过17%。同时,住宅建筑是美国最大的能源消费者。消费者通过确保在舒适的情况下使用适当数量的电力来应对全球问题,如气候变化和自然资源的枯竭。制定有效的运营时间表和确定适当的消费与生产水平是具有挑战性的。这些挑战可以通过多种方法来解决,包括数学优化、模型预测控制和启发式控制。本文提出了一个基于LM算法的太阳能光伏集成HEMS,以有效管理智能家庭中的电力。
2. 所提系统的建模: 本文提出了一种基于LM算法的太阳能光伏能量采集系统,并使用MATLAB/Simulink环境设计了最大功率点跟踪(MPPT)能量采集系统,使用ANN工具箱分析了创建的HEMS模型。基于LM算法,太阳能光伏能量与智能家居系统集成。由于家庭和能源管理系统基于互联网并与之连接,整个系统被称为家庭能源管理系统的互联网(IoHEMS)。传统的电器(EAs)通过使用名为智能插座(SP)的互联网智能插座(IoSPS)转换为智能EAs。智能家居中使用的所有传感器都连接到自供电的无线传感器节点。所提出的IoHEMS的示意图如图1所示。该模型使用了Soltech ISTH-215-P太阳能电池板,其参数如表1所示。该模型有两个子系统:ANN MPPT和切换块。ANN MPPT子系统的比较器比较ANN输出电压V1与光伏阵列电压。光伏阵列的电压是比較器的参考。比例积分微分(PID)控制器提供与V和V1输入电压成比例的占空比信号。切换块的升压转换器使用脉宽调制(PWM)发生器的门信号激活绝缘栅双极晶体管。比較器的电压差控制PWM占空比。ANN算法的目标与训练值之间的最佳相关性保持恒定的PWM占空比,平滑IGBT开关。太阳能数据子系统将输入数据(辐照度和阵列温度)顺序传输到光伏阵列,因此模拟时间与输入数据传输时间相匹配。
3. 结果与讨论: 图6a显示了在不同辐照度200 W/m2、400 W/m2、600 W/m2、800 W/m2和1000 W/m2下25°C时的电流-电压(I-V)特性。太阳能辐照度的波动导致太阳能电压和电流的变化。图6b表明,光强度决定了太阳能电池的生产能力。尽管保持相同的太阳能电池温度,但唯一的最佳能量点是相同的光强度。所提出的太阳能能量采集模型模拟了1000秒,以关联光伏阵列的1000个输入数据与模拟时间。使用了离散块(DB)而不是连续模拟进行最佳分析。DB仅在固定间隔的整数倍处对输入变化做出响应,这个固定间隔称为块的采样时间。DB在连续的采样时间击中之间保持其输出恒定。ANN的完美预测取决于训练数据集的体积和训练算法。通常,对于大量的训练数据集,ANN可以预测微不足道的错误。输入数据(太阳能辐照度和阵列温度)从查找表中馈送到太阳能电池板,由时钟同步。LM算法的ANN回归图如图7所示。回归、均方误差、梯度、动量参数(Mu)和验证等参数通常用于识别任何算法对训练数据集的性能和准确性。回归表示预测质量,其中输出是输入的函数,而错误是通过将输出从目标中减去来计算的。回归R值衡量相关性,R=1的值意味着输出和目标之间有密切的关系。通常,错误是通过从目标中减去输出来计算的。图7的回归图表明,数据通过LM算法训练得非常接近,误差可以忽略不计(均方误差-1.58284e−9),其中输出遵循目标值。由于MSE不为零,这意味着数据没有过拟合。回归值为0.999999,表明数据拟合和截距仅由于数据挖掘和使用无错误数据。此外,图8a通过展示ANN在训练、验证和测试阶段的数据匹配中产生零错误来证实了这种方法。图8a中的箱子表示图8a中垂直条形图的数量。误差直方图,其中ANN的总误差范围从-0.00015(最左边的箱子)到0.000164(最右边的箱子)。图8b和图8c分别显示了ANN处理指定数据集的训练状态和性能阶段。在1000个周期时,图8b描述了训练数据集的梯度、动量参数(Mu)和验证检查。根据模拟,梯度为0.000078(7.8e5),在1000个周期时,表明训练数据集具有最小损失函数的可忽略方差。模拟结果表明,总误差等于输入向量的平均值和一个零输出选择。Mu的极小值接近零和梯度以及训练数据集的验证测试表明,LM算法适合MPPT。在1000个周期后,训练数据集的样本收敛到最优训练结果,最佳验证性能为0.0000000027133(2.7133e−9),接近零的验证性能表明Levenberg-Marquardt算法以低误差预测MPPT。对三种算法进行严格的比较分析可以在研究[46]中获得。表4中列出了关键性能参数的总结。根据模拟结果,L
evenberg-Marquardt(LM)算法在适当的数据集训练和输入输出之间的相关性以及误差方面表现更好,优于贝叶斯正则化(BR)和缩放共轭梯度(SCG)算法。尽管SCG在24个周期内完成整体数据处理的时间较少,但梯度和误差的高值使得这种算法不适合本研究。同样,高动量参数和高预测处理时间使得BR不如LM算法合适。所提出的LM算法为本研究提供了几个关键优势。一个主要优势是其易于处理,因为它只需要少量参数,如太阳能辐照度、温度和太阳能电压,即可生成系统输出的准确预测。这种简单性简化了实施过程并增强了用户友好性。然而,LM算法在处理大量数据或在商业规模实施时可能会出现潜在限制。尽管存在这一挑战,LM算法仍然是优化太阳能光伏集成和提高家庭能源管理系统效率的有价值工具。测试了四种不同高功率消耗的家用电器的开关和响应以进行能源管理。用户根据马来西亚TNB的电费确定开关时间。仅提供两个预定的关税:高峰(上午8:00至晚上10:00)和非高峰(晚上10:00至上午8:00)。根据HEM算法,图9显示了图(a)中的热水器(WH)开关和图(b)中的尊敬的功耗。算法向主控制器发送信号,以在早上7:00打开WH,WH可以一直开启直到上午8:00。图9的第二部分(b)显示了WH的尊敬的功耗。在其他三个EA中,WH是消耗最多能量的电器。其使用时间设置为早上7:00至上午8:00,因为房主习惯在离家去办公室之前洗澡。因此,使用时间将自动减少电费。
4. 结论和未来工作: 基于LM算法设计和开发了集成太阳能光伏的HEMS。在考虑数据集训练和输入输出之间的相关性以及误差方面,该算法的性能更好。使用太阳能辐照度、温度和电压等输入参数,其中70%的数据用于训练,15%用于验证,15%用于测试。对四个常见的家用电器-空调(AC)、热水器(WH)、洗衣机(WM)和冰箱(Ref)进行了建模,将传统家庭转变为智能家庭。设计的模型准确展示了家用电器的开关功能,促进了从电网到电池的平稳过渡,从而确保在高峰时段降低电费。通过SPS和WSN节点实现了完整的物联网功能与HEMS设置的实验实施。这一实施已经通过SPS和WSN的60秒数据传输间隔进行了实验。此外,SPS和WSN可以将电气参数和传感器数据中继到智能手机和云服务器。此外,家用电器可以通过SPS在网络内进行通信。这项研究的未来工作可以如下扩展:
- 目前,该系统可以预测集成太阳能电池板数据,如温度、辐照度和电压,这可以扩展为现有的HEMS中的完整AI控制器,以预测每个消费者的能源消费模式,包括预测能源需求、电力关税和天气条件。开发专用的用户界面以收集和预处理数据是必要的。这个过程涉及收集和清理历史能源消费数据以消除不一致性。必须进行广泛的验证测试以确保准确性。
- 当前模型是为居住在紧凑公寓中的小家庭设计的。所提出的算法可以通过使用多层神经网络来处理大量数据集,从而提高其在大型应用中的可用性,如社区或公寓大楼。
这项研究可以实施许多措施来促进太阳能的采用,包括早期的上网电价制度、大规模太阳能项目以及由可持续能源发展局(SEDA)新建立的净能量计量3.0计划。此外,可以添加功能,成为一个点对点(P2P)能源交易控制器。