论文标题:Challenges and Emerging Issues for Generative AI and Hyper Intelligence
中文标题:生成性人工智能和超智能的挑战与新问题
作者信息:
- Jianhua Ma,日本法政大学计算机与信息科学学院
- Qun Jin,日本早稻田大学人类信息学与认知科学系
- Hui-Huang Hsu,台湾淡江大学计算机科学与信息工程系
- John Paul C. Vergara,菲律宾马尼拉雅典耀大学信息系统与计算机科学系
- Antonio Guerrieri,意大利国家研究委员会自动化研究所
- Claudio Miceli,巴西里约热内卢联邦大学系统工程与计算机科学研究生项目
- Ao Guo,日本名古屋大学信息学研究生院
论文出处:2024 IEEE Cyber Science and Technology Congress (CyberSciTech)
主要内容概述:
摘要:生成性人工智能(GenAI)是人工智能发展中的一个重要里程碑,它将复杂的AI能力带入日常生活和工作中。随着我们步入超智能(Hyper-I)时代,从计算复杂性到伦理问题,各种关键挑战和新问题逐渐显现。本文从人类学习的角度探讨了人工智能的演变,比较了机器智能和人类智能,并为未来AI系统的发展确定了关键考虑因素。文章还强调了规范先进AI模型,如基于强化学习的长期规划代理,以确保超智能保持在人类控制之下的重要性。此外,论文讨论了基于变换器的模型的计算复杂性,它们在不可解问题、认知构建系统和资源受限环境中的作用,以及通过TinyML在这些领域的应用。
引言:自20世纪50年代人工智能诞生以来,已经取得了许多深刻的进展。其中,生成性AI无疑是一个革命性的里程碑。它不仅是技术突破,也使得人工智能在人们的日常生活中无处不在。随着AI,特别是生成性AI的加速发展,我们正在进入一个普遍智能(UI)的新时代。文章提出了一系列基本问题,例如人类智能与人工智能之间的关系,两种智能如何协作,AI和生成性AI能否具有创造力,甚至控制或威胁人类,以及哪些大脑工作机制可以应用于不同人工智能实体的认知活动中。
从人性的角度思考未来AI:本节从人性的角度探讨了人类智能和机器智能之间的差异,以及人类学习和机器学习。文章讨论了丹尼尔·卡尼曼关于人类智能的两种认知系统的区别,以及人工智能如何覆盖这些系统。下一代AI模型的目标是整合系统1和系统2。文章还探讨了人类智能的机制尚未完全阐明的问题,以及物理人工智能研究的重要性。
超智能在人类控制之下:本节讨论了大型语言模型(LLMs)接近通过图灵测试的能力,以及这是否代表了向人工通用智能(AGI)的重大飞跃。文章提出了对人类构成真正威胁的AI模型类型,即能够独立“进化”的AI模型。文章强调了为先进AI模型建立治理框架的重要性,以确保超智能在人类控制之下。
变换器和不可解性:本节介绍了变换器——一种对当前大型语言模型(LLMs)成功至关重要的神经网络架构。文章从计算复杂性和不可解性的角度研究了变换器,包括变换器训练的计算复杂性、变换器在解决NP难问题中的应用,以及变换器在确定序列问题计算复杂性方面的潜力。
认知建筑中的挑战和进步:认知建筑(CBs)代表了现代基础设施演进的下一个前沿,它通过物联网技术提供增强的生活体验。文章讨论了认知建筑管理中日益增加的复杂性和数据强度,以及这些挑战所需的先进解决方案。文章还介绍了COGITO平台,这是一个旨在实现认知建筑全部潜力的新型物联网基础边缘/云计算平台。
TinyML:挑战与机遇:本节讨论了在资源受限环境中部署传统机器学习算法的挑战,特别是在智能空间应用中。TinyML通过优化机器学习算法和模型,使其在微控制器或其他低功耗处理器上直接部署,从而在不依赖云服务器的情况下实现设备上的推理。文章探讨了将生成性AI与TinyML结合的主要方法,包括模型压缩技术、在资源受限设备上运行生成性AI的挑战,以及优化模型以实现低功耗执行的解决方案。
结论:文章概述了与生成性AI和超智能相关的主要挑战和进展。AI技术的快速发展带来了需要谨慎考虑的机遇和风险。文章强调了在实际限制内优化AI的重要性,以及确保超智能与人类价值观保持一致、解决计算限制和提高资源受限AI系统效率的领域需要进一步研究。