TinyML 实时水产养殖监测:摩洛哥案例研究

论文标题

  • 中文:TinyML 实时水产养殖监测:摩洛哥案例研究

  • 英文:Tiny Machine Learning for Real-Time Aquaculture Monitoring: A Case Study in Morocco

作者信息

论文出处

  • 会议:2024 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)

  • DOI:10.1109/GCAIOT63427.2024.10833526

摘要

本文提出了一种基于 TinyML 的低功耗边缘设备集成方案,用于实时自动化监测和控制水产养殖系统,如收集数据和触发警报,减少人工需求。系统提供实时数据,包括 pH 值、温度、溶解氧和氨水平,以控制水质、营养水平和环境条件,实现更好的维护、高效的资源利用和对封闭水产养殖空间的最优管理。系统在异常检测时能够发出警报,收集的传感器数据可用于优化水处理过程、饲料分配、饲料模式分析和提高饲料效率,降低运营成本。研究探讨了开发基于 TinyML 的水产养殖监测解决方案的可行性,考虑了传感器选择、算法设计、硬件限制和伦理因素。通过展示 TinyML 在水产养殖中的潜在好处,旨在促进更可持续和高效的养殖实践。

1. 引言

摩洛哥的 Azrou 国家水产养殖中心通过传统手动方法管理其水培系统,这种方法需要大量人工且容易出错。通过集成技术,预期可以显著提高可持续性和生产力。智能监测系统提供实时数据、自动警报和建议解决方案,精确控制水产养殖环境,减少人工干预,提高整体运营效率。这一目标与中心推进可持续水产养殖实践、促进环境 conservation 和推广创新农业技术的目标一致。研究不仅将惠及 Azrou 的国家水产养殖中心,还将通过智能技术进一步现代化全球水产养殖。农业是摩洛哥的重要部门,占国家国内生产总值(GDP)的约14%。然而,摩洛哥面临显著的气候挑战:水资源短缺、温度变化和生态破坏,这对农民构成威胁。最近,水利部长 Nizar Baraka 强调,自2024年以来,摩洛哥已连续第六年遭受干旱,导致降雨量比通常的季节平均水平减少了67%。2022年水储备填充率为33%,2024年恶化至仅23.5%的容量。水培提供了一种有前景的替代方案;这是一种可持续的农业系统,将水产养殖与水培结合在一个闭环水循环系统中。鱼的残留物被细菌转化为植物的营养物质,然后水被过滤并返回鱼缸。Azrou 的中心认识到其潜力并已使用它。然而,该系统相当复杂,需要农民不断监测。为解决这一问题,我们提出使用 TinyML 进行智能监测水产养殖鱼类养殖空间,以实现实时监测和数据分析。TinyML 通过集成先进技术来优化水质和鱼类健康,彻底改变了实时水产养殖监测。这种方法利用物联网(IoT)、机器学习和创新传感器系统,优化水质和鱼类健康。实时监测系统 IoT 集成:如 [4] 开发的系统,利用 Arduino 微控制器监测 pH 值、浑浊度和水位,并通过 SMS 和网络接口发送异常条件的警报。水质管理:AquaBot 系统 [4] 自动化水质监测,并根据实时数据推荐合适的鱼类品种,实现94%的准确率。高级成像技术:[5] 适应了飞行时间相机与红外激光,用于跟踪鱼苗,确保在不同水条件下最小干扰的同时提供精确监测。鱼类检测和跟踪:[6] 展示了 AI 在自动化鱼类监测中的有效性,使用深度学习模型提高水产养殖中的检测精度。尽管 TinyML 在水产养殖监测中取得了显著进展,但确保这些技术对小规模农民的可负担性和可及性仍然是一个挑战,这可能限制其广泛采用。论文的其余部分组织如下:II 背景和文献综述 III. 挑战:伦理考虑 IV 方法 V 限制和未来工作 VI. 结论

2. 背景和文献综述

2.1 现有的水产养殖监测方法

全球鱼类养殖日益普及,需要密切监测环境以确保最佳生长条件、预防疾病爆发和最大化生产效率。Azrou 的 Centre National d’Hydrobiologie et de Pisciculture 报告称,传统监测方法主要依赖直接观察和简单仪器 [7]。这些方法包括使用便携式传感器测量温度、pH 值、溶解氧和盐度等参数。数据收集通常每隔几小时到几天进行一次,这可能导致在这些时间间隔内未检测到不利条件 [8]。然而,先进的监测系统开始利用无线传感器网络(WSNs)连续监测关键参数,如水质和喂食行为 [9]。这些系统提供实时数据,使农民能够及时采取行动 [10]。尽管它们具有优势,但水产养殖中的 WSNs 通常与高功耗、昂贵的维护和昂贵的设置及运营成本相关。因此,这些系统可能对许多小规模农民来说遥不可及。此外,恶劣的水环境对传感器的耐用性和数据传输效率构成持续挑战。

2.2 TinyML 在农业及相关领域的应用

TinyML 能够在边缘设备上执行智能数据处理,无需持续将数据传输到集中式服务器,已在多个行业(包括农业)中引起了广泛关注 [12]。TinyML 已成功应用于早期作物疾病检测、确定最佳灌溉时间和预测害虫侵扰。例如,配备 TinyML 模型的传感器节点已部署用于监测土壤湿度水平,并仅在需要灌溉时向农民发出警报,从而节约用水 [11]。在害虫管理中,TinyML 通过分析它们的声学信号来区分昆虫种类,实现及时干预 [14]。除了农业,TinyML 还应用于环境监测,特别是在测量空气和水质方面 [15]。基于微控制器的系统使用 TinyML 已安装在城市环境中以检测污染水平,为居民和政府当局提供即时反馈 [16]。此外,TinyML 已用于遥感,用于灾害管理和环境保护,提供关键数据的实时分析 [16] [17]。这些应用展示了 TinyML 通过启用本地、实时决策来提高各种实践的效率和可持续性的潜力。

3. 挑战:伦理考虑

3.1 隐私和监控

水产养殖中的实时监测,特别是使用视频系统或持续数据收集,引入了潜在的隐私风险。虽然这些系统主要捕获环境数据,如水质,但它们可能会无意中记录在鱼类养殖场附近或在鱼类养殖场工作的个人的信息。如果没有适当的安全措施,此类数据可能导致未经授权的监控,引发重大的隐私问题 [17]。在摩洛哥等新兴行业,遵守隐私法规至关重要。必须遵循诸如通用数据保护条例(GDPR)或当地摩洛哥法律等框架,以确保数据不被滥用。此外,与农民和社区进行开放和透明的沟通至关重要。建立信任可以防止对不必要监控的任何看法 [18]。

3.2 数据完整性和准确性

在动态水产养殖环境中部署 TinyML 呈现数据准确性方面的挑战。环境因素可能会引入传感器读数中的噪声,这使得分析复杂化,如果未解决,可能会导致对水质或鱼类健康的错误结论。这些错误可能会产生重大影响,可能会损害水产养殖部门及其周围的生态系统 [19]。为了确保基于此数据的决策是合理的,必须采用强大的验证技术。这确保了数据完整性,特别是在影响农民生计和水生可持续性的关键决策过程中 [20]。以负责任的方式收集、存储和使用数据的道德数据处理至关重要,以避免任何操纵或剥削。

3.3 技术的双重用途和滥用潜力

尽管 TinyML 为水产养殖中的实时监测提供了许多好处,但它也带来了风险。旨在增强水产养殖的相同技术可能会被重新用于有害活动。例如,监测系统可能会被利用进行未经授权的捕鱼甚至环境破坏。此外,收集的数据可能会被操纵,对保护和当地经济构成威胁 [21]。解决这些风险需要严格的安

全协议。限制对敏感数据的访问,使其使用与道德标准保持一致,并进行持续的权威监督,可以防止滥用。这些措施将确保技术支持可持续水产养殖,而不是破坏它。

3.4 用技术促进环境可持续性

摩洛哥的 TinyML 驱动的水产养殖工作专注于发展一个可持续的、环境友好的部门。水产养殖经营者可以利用实时数据维护最佳鱼类养殖条件,限制疾病爆发的危险,并优化水的使用。TinyML 系统提供准确的监测和控制,从而有效地使用自然资源。这种技术的适当应用旨在为更广泛的环境目标做出贡献。可持续发展不仅仅是一个目标;这是一个必要条件。通过智能监测,水产养殖操作可以与周围生态系统共存,甚至支持它们。这种平衡促进了经济增长和环境责任,使摩洛哥的水产养殖业成为全球可持续发展的典范。

4. 方法

为了增强 Azrou 国家水产养殖中心的水产养殖系统的监测和管理,我们提出了一个智能监测和管理系统。该系统分为三个主要部分:输入(传感器)、微控制器和输出(数据分析和警报)。

4.1 输入:传感器选择和数据采集

选择了多种先进的传感器来监测维持水产养殖系统最佳条件所必需的关键水和空气参数。根据其精度、可靠性和与微控制器集成的便利性选择了传感器。

4.1.1 水参数
  • pH:选择了 Atlas Scientific EZO-pH 套件,因其高精度和连续监测能力。

  • 温度:选择了 DS18B20 防水温度传感器,因其准确性和易于集成。

  • 溶解氧(DO):Atlas Scientific EZODO 套件对维持鱼类和植物的适当氧气水平至关重要。

  • 氨、亚硝酸盐和硝酸盐(NH₃/NO₂/NO₃):选择了 Vernier 铵离子选择性电极和 Vernier 亚硝酸盐离子选择性电极来监测有毒水平,确保它们保持在安全限制内。

  • 总溶解固体(TDS):DFRobot Gravity 类比 TDS 传感器用于评估水的清晰度和整体质量。

  • 浑浊度:提出了 Aqua TROLL 浑浊度传感器用于监测水的清晰度。

4.1.2 模型开发和选择

在之前的研究 [22] 中,开发和训练了多种模型,包括卷积神经网络(CNN)、深度长短期记忆(LSTM)、门控循环单元(GRU)和人工神经网络(ANN),用于预测水培系统中的关键指标。CNN 模型表现出色,实现了所有指标中最低的误差:MAE、RMSE、MSE、MdAPE。我们选择使用中位数绝对百分比误差(MdAPE)而不是传统的平均绝对百分比误差(MAPE),以考虑指标中的大量异常值和突然变化,例如浑浊度,这些通常是由于错误测量引起的。这些异常值可能会严重扭曲模型真实性能的表示。此外,由于在物理实施部署后数据收集将继续进行,我们预计模型的性能将随着时间的推移而提高。对于当前研究,将使用特定于水产养殖的数据对 CNN 模型进行微调,这些数据在线存储库中较少。这种微调将包括在水培背景下以前未考虑的额外指标,为随着实时数据从水产养殖设施收集和处理而进行的持续模型改进奠定基础。

4.2 微控制器:数据收集和传输

由于其与所选传感器的兼容性和易于集成,选择了 Arduino 微控制器。微控制器将从所有传感器收集数据,并将其传输到中央处理单元进行进一步分析。这种设置确保了一致的实时数据收集,使水产养殖系统能够主动管理。

4.3 输出:数据分析和预测监测

收集的数据将使用为实时监测和预测分析设计的 TinyML 算法进行处理。然后,系统将激活任何偏离最佳范围的参数的相应电机,并提供维护建议。这种方法最小化了人工干预的需要,提供了对水产养殖环境的精确控制,并提高了整体运营效率。然后,系统将根据预测值是否落在最佳范围以下的指标范围内采取必要的行动 [23]:

表 1:水产养殖系统的指标最佳范围

指标最佳范围
温度25 ℃ – 32 ℃
pH6.5 – 8.5
溶解氧(DO)>5 mg/L
总溶解固体(TDS)400 mg/L
亚硝酸盐(NO2)<0.2
硝酸盐(NO3)0-100
浑浊度30 – 80 cm

系统将执行的关键操作之一是在任何预测的指标值超出确定的最佳范围时向员工发送通知。这些通知将指定导致问题的确切指标,使员工能够及时采取适当的纠正措施。此外,系统将纳入安全措施,允许 Azrou 中心的员工在系统出现故障时快速关闭系统。此功能对于防止对鱼类或水质的潜在伤害至关重要,确保水产养殖环境的整体安全。

5. 限制和未来工作

本研究的主要限制之一是水产养殖环境的可用数据不足,无论是在线还是现场。为解决这一问题,我们利用了基于水培数据集的预训练模型 [24],因为水培和水产养殖系统之间存在显著相似性。这种方法提供了一个基础模型,可以在部署到水产养殖环境后,随着更多相关数据的可用,进行持续的微调。未来,计划将计算机视觉技术集成到系统中,使相机能够识别和收集与鱼类相关的信息。这将使系统能够为员工提供更详细和有用的见解。此外,目标是在 Azrou 国家水产养殖中心实施和测试系统的物理原型。从这一实施中获得的反馈将用于进一步改进系统。另一个我们计划探索的有趣研究方向是利用收集到的数据进行分析,以识别任何有价值的见解,例如与鱼类喂养或鱼类密度相关的数据。这些见解可能会帮助我们进一步改进系统。

6. 结论

在本文中,我们提出了一个基于 TinyML 的边缘系统框架,旨在监测 Azrou 国家水产养殖中心的水产养殖环境,并提高运营效率。我们提出了一个旨在通过 AI 驱动分析自动化监测关键指标的架构,以减少员工的工作量。我们的方法包括一个预训练的机器学习算法,可以部署在边缘设备上,每小时预测关键指标。当检测到异常时,系统将向员工发送详细通知,确保及时干预。此外,我们纳入了安全措施,以在系统出现故障时负责任地保护鱼类和水。展望未来,我们概述了我们的未来计划,包括将计算机视觉技术集成到系统中,以实现更先进的鱼类监测,以及系统的物理实施和测试,以收集反馈并进一步完善其功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神一样的老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值